静宜大學94學年度第4學期企管系『統計學』期末考

【注意】本試卷共有 13 小題,每題值 10 分。考試時間 70 分鐘。請清楚寫上你的答案,並附上簡單計算過程或說明,沒有說明的答案得不到任何分數。(2006 年 9 月 13 日)

- 1. 淡江汽車公司宣稱其所生產之汽車,每公升汽油平均可行駛至少 15 公里,且其標準差 爲 3 公里。今隨機抽出 36 輛汽車測試,得其每公升汽油平均行駛 14 公里,則
 - (a)在顯著水準 $\alpha = 0.05$ 下,檢定淡江汽車公司之宣稱是否爲真?
 - (b)若實際平均公里數為 13.5, 發生型 II 錯誤之機率為何?
 - (c)利用 p-value 回答(a)之問題;
 - (d)若顯著水準 $\alpha = 0.05$,檢驗者希望實際平均公里數爲 13.5,同時可忍受型 II 錯誤的機率爲 0.025,則應取多少輛汽車來試驗?

【解】

(a)

$$H_0: \mu \ge 15$$
 , $z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$ 、左尾 、 $\alpha = 0.05$,拒絕區域 $R = \{z < -1.645\}$
$$z = \frac{14 - 15}{3/\sqrt{36}} = -2 \in R$$
 ,拒絕 H_0 ,平均行駛里程不會高於 15 公里。

(b)

新臨界値
$$z' = \frac{\mu - \mu'}{\sigma/\sqrt{n}} + z^* = \frac{15 - 13.5}{3/\sqrt{36}} - 1.645 = 1.355$$

右尾、z分配、臨界值z'=1.355,求得機率 $\beta=0.0877$ 。

(c)

$$z = \frac{14-15}{3/\sqrt{36}} = -2$$
,左尾、z 分配、臨界値 $z^* = -2$,求得機率 p 値 = 0.0228;

$$\alpha = 0.05 > p = 0.0228$$
,拒絕 H_0 。

(d)

z 分配、左尾、
$$\alpha=0.05$$
 ,求得拒絕區域 $R=\left\{z<-1.645\right\}$ ($z^*=-1.645$)

z分配、右尾、機率 $\beta = 0.025$,求得臨界值z' = 1.96

$$z' = \frac{\mu - \mu'}{\sigma / \sqrt{n}} + z^* \implies 1.96 = \frac{15 - 13.5}{3 / \sqrt{n}} - 1.645 \implies n = 51.98 \doteq 52$$

- 2. 某產品之容量呈常態分配,在改善填裝製程前,隨機抽查7個產品,計算得其平均容量爲145cc,標準差12cc。經改善填裝製程後,再隨機抽查8個產品,計算得平均容量153cc,標準差11cc。
 - (a)改善前後,產品容量的標準差是否相同? ($\alpha = 0.05$)
 - (b)改善製程後,所生產的產品平均容量是否較高? ($\alpha = 0.05$)

【解】

(a)

$$H_0: \sigma_1^2 = \sigma_2^2$$
, $F = \frac{s_1^2}{s_2^2}$, $df = (6,7)$ 、雙尾、 $\alpha = 0.05$, $R = \{F < 0.1756$ 或 $F > 5.1186\}$
$$F = \frac{12^2}{11^2} = 1.1901 \notin R$$
 ,無法拒絕 H_0 ,兩母體變異數可視爲相等。

(b)
$$H_0: \mu_1 \geq \mu_2 \ , \ t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \ , \ df = 13 \ , \ \text{左尾} \ , \ \alpha = 0.05 \ , \ R = \left\{t < -1.7709\right\}$$

$$t = \frac{145 - 153}{11.47 \times \sqrt{\frac{1}{7} + \frac{1}{8}}} = -1.3474 \not\in R \ , \\ \text{無法拒絕} \ H_0 \ , \ \text{新製程的平均容量沒有比舊製程高} \ ,$$

$$s_p = \sqrt{\frac{(7 - 1) \times 12^2 + (8 - 1) \times 11^2}{7 + 8 - 2}} = 11.47$$

3. 就下列資料作雙因子變異數分析:

	A1	A2	A2
B1	7	9	12
B2	6	4	8
В3	3	8	9
B4	2	9	11

- (a)請寫出虛無假設(應該有兩個);
- (b)請寫出檢定(a)之虛無假設的檢定統計量(含統計量、分配、自由度);
- (c)請計算出(b)之樣本檢定統計量值。

【解】

	A1	A2	A2	Σ (列)	$n_{\overline{\gamma}[]}$	$(\Sigma \overline{\mathcal{G}})^2/n_{\overline{\mathcal{G}}}$
B1	7	9	12	28	3	261.3
B2	6	4	8	18	3	108.0
В3	3	8	9	20	3	133.3
В4	2	9	11	22	3	161.3
Σ(行)	18	30	40	88	12	664.0
n _行	4	4	4	12		
(Σ行) ² /n _行	81	225	400	706		

x^2	A1	A2	A2	合計
B1	49	81	144	
B2	36	16	64	
В3	9	64	81	
B4	4	81	121	
合計	98	242	410	750

_					
	變異來源	平方和	自由度	均方	F
	處置變異	60.67	2	30.33	7.184
	集區變異	18.67	3	6.22	1.474
	組內變異	25.33	6	4.22	
	線戀里	104.67	11		

$$H_0: \mu_{A1} = \mu_{A2} = \mu_{A3}$$

 $H_0: \mu_{B1} = \mu_{B2} = \mu_{B3} = \mu_{B4}$

$$F_A = \frac{MSTR}{MSE}$$
 , $df = (2,6)$ 之 F 分配 $F_B = \frac{MSBK}{MSE}$, $df = (3,6)$ 之 F 分配

$$F_A = 7.184, \quad F_B = 1.474$$

4. 就以下資料:

X	1	2	3	4	5
у	4	6	8	8	12

迴歸變異數分析表如下

變異來源	平方和	自由度	均方	F
迴歸變異	32.40	1	32.40	34.714
_ 隨機變異	2.80	3	0.93	
總和	35.20	4	•	

(a)若迴歸式爲 $y = \alpha + \beta x$,請計算 $\alpha \times \beta$ 之最小平方估計量值;

(b)請計算判定係數 R^2 。

【解】

Х	у	X ²	xy
1	4	1	4
2	6	4	12
3	8	9	24
4	8	16	32
5	12	25	60
15	38	55	132

$$\frac{1}{n=5,} \quad |\Sigma| = n\Sigma x^2 - \Sigma x \Sigma x = 5 \times 55 - 15 \times 15 = 50$$

$$\hat{\alpha} = \frac{\sum y \sum x^2 - \sum x \sum xy}{|\Sigma|} = \frac{38 \times 55 - 15 \times 132}{50} = 2.2$$

$$\hat{\beta} = \frac{n\Sigma xy - \Sigma x\Sigma y}{|\Sigma|} = \frac{5 \times 132 - 15 \times 38}{50} = 1.8$$

$$R^2 = \frac{SSR}{SST} = \frac{32.4}{35.2} = 0.9205$$

5. 就以下資料作獨立性檢定(檢定父親教育成度與子女數目間的關係):

組別	0-1	2-3	4以上
國中以下	14	37	32
高中職	19	42	17
大重以上	12	17	10

(a)請寫出國中以下教育程度之父親有0或1名小孩的理論次數;

(b)檢定結果爲何?

【解】

	理論次數(e _i)					
組別	0-1	2-3	4以上	合計		
國中以下	18.68	39.84	24.49	83		
高中職	17.55	37.44	23.01	78		
大專以上	8.78	18.72	11.51	39		
合計	45	96	59	200		

	($o_i - e_i)^2 / e_i$		
組別	0-1	2-3	4以上	合計
國中以下	1.170	0.202	2.307	3.679
高中職	0.120	0.555	1.570	2.245
大專以上	1.185	0.158	0.197	1.540
合計	2.475	0.916	4.073	7.464

(a)
$$e_{11} = \frac{83 \times 45}{200} = 18.68$$

(b)

 H_0 : 父親教育程度與子女個數無關,

$$\chi^2 = \Sigma \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$
、 $df = 2 \times 2 = 4$ 、 右尾 、 $\alpha = 0.05$, $R = \left\{\chi^2 > 9.4877\right\}$

$$\chi^2 = \Sigma \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}} = 7.464 \notin R \ , \ 無法拒絕 \ H_0 \ , \ 父親教育成度與子女數目無關 \ \circ$$