
Efficient Algorithms for Subtrees Comparison of

Phylogenetic Trees with Applications to Two

Component Systems Sequence Classifications in

Bacterial Genome

Yaw-Ling Lin∗ Ming-Tat Ko†

Abstract

A phylogenetic tree with n leaves is a (rooted binary) tree such that each
leaf node is uniquely labelled from 1 to n. The problem of whether there
is a subtree in T1 and another subtree in T2 consisting of the same set
of leaves in both trees with size of k is called k-agreement problem. The
paper shows that it can be solved in O(n) time.

The normalized cluster distance, d(A, B), of two sets is defined by
d(A, B) = ∆(A, B)/(|A| + |B|), where ∆(A, B) denotes the symmetric
set difference of two sets. We show that computing all pairs normalized
cluster distances between all paired subtrees of two trees can be done
in O(n2) time. Since the total size of the outputs will be Θ(n2), the
algorithm is thus computationally optimal.

A nearest subtree of a subset of leaves is such a subtree that has the
smallest normalized cluster distance to these leaves. Here we show that
finding nearest subtrees for a collection of pairwise disjointed subsets of
leaves can be done in O(n) time. Furthermore, we show some hardness
results concerning comparing two sets of co-evolution genes.

Several applications of these algorithms in areas of bioinformatics is
considered. Among them, we discuss the 2CS (Two component systems)
functional analysis and classifications on bacterial genome.

Keywords: two-component systems, bacterial genome, algorithms, phy-
logenetic trees, normalized cluster distance.

1 Introduction

With the rapid expansion in genomic data, the age of large-scale biomolecular

sequence analysis has arrived. An important line of research in post-genome

∗Department of Computer Science and Information Management, Providence University,

200 Chung Chi Road, Shalu, Taichung, Taiwan 433. e-mail: yllin@pu.edu.tw
†Institute of Information Science Academia Sinica, Nankang 115 Taipei, Taiwan 115. e-

mail: mtko@iis.sinica.edu.tw

analysis is to analyze the evolution and co-evolution genes clustering of genomic

sequences.

Antibiotic is the standard treatment for bacterial infections, which remains

one of the leading causes of morbidity and mortality of humans in the world.

However, drug-resistant bacterial strains are common that significantly limited

the effectiveness of antibiotics.

The two-component signal transduction pathway (2CS) are usually com-

posed of a sensor kinase and a response regulator. Because of its important

functional roles and ubiquitous nature in most bacterial and fungal species,

2CS have been considered as very good targets in drug development [2]. The

identification of the function of these 2CS would greatly facilitate not only our

understanding on the basic physiology and regulatory networks of bacteria but

also designing a way to prevent from causing disease in humans.

In this paper, we present algorithmic results concerning the bioinformatic ap-

plications in functional analysis and classifications of 2CS on bacterial genome.

The rest of the paper is organized as follows. Section 2 discusses the biolog-

ical applications in more depth. We show that computing all pairs normalized

cluster distances between all paired subtrees of two trees can be done in O(n2)

time in Section 3.1. Since the total size of the outputs will be Θ(n2), the algo-

rithm is thus computationally optimal. We show that finding nearest subtrees

for a collection of pairwise disjointed subsets of leaves can be done in O(n) time,

and finding whether there is a subtree in T1 and another subtree in T2 consist-

ing of the same set of leaves in both trees with size of k can be solved in O(n)

time in Section 3.3. Furthermore, we show some hardness results concerning

comparing two sets of co-evolution genes in Section 4.

2 Applications to Bacterial 2CS Sequence Anal-

ysis

Bacterial infections remain one of the leading causes of morbidity and mortality

of humans in the world. Antibiotic is the standard treatment but drug-resistant

2

bacterial strains are common that significantly limited the effectiveness of antibi-

otics. It is not surprising to find that many companies have exerted tremendous

effort to develop novel antibiotics. So far, less than 20 classes of antibiotics and

target molecules in bacteria are known. To overcome the drug resistant problem,

many underutilized drug targets are being reevaluated and novel targets are in

urgent demands. Bacterial components that serve as a target of drug interven-

tion can be divided arbitrarily into several categories. These include virulence

factors, gene products essential for the growth during infection, enzymes unique

in bacteria, bacterial membrane transporters, bacterial two-component signal

transduction pathway, product of genes unique in virulent strains of the bacte-

rial pathogen, and product of genes conserved through evolution. Among these

potential drug targets, the bacterial virulence factors are the most obvious and

likely to be the most effective targets for antibacterial drug intervention.

Although new lines of antibiotic are in urgent demands, there were only 27

antibiotics under development in 1998, most of them focus on modification of

existing drugs. It is expected that only a handful of them will be approved

by FDA in the near future. Diagnosis of bacterial disease is a rather time-

consuming process even in modern clinical laboratories. Typically 3-4 days

are required to make a diagnosis for acute bacterial infections and up to 4

weeks for a chronic infection such as tuberculosis. It can take an even longer

time if drug susceptibility tests are included. Therefore, it is not unusual that

physicians could choose the wrong type of antibiotics, which not only delay the

timing of appropriate treatment but also can result in drug resistance. How to

differentiate critical groups of pathogen and together their drug susceptibility

pattern within hours has become an important research direction in clinical

microbiology.

These virulence genes are therefore the prime targets for development of

diagnostic tool and vaccine, and for antimicrobial drug intervention. In tra-

dition, the bacterial virulence factors were identified through a series of mi-

crobiology and immunology studies. This process has been greatly facilitated

recently by the completion of genome projects of many pathogenic bacteria.

3

Many virulence-associated genes can be readily identified through bioinformatic

approaches. Nevertheless, the BLAST programs [1] commonly used in genome

analysis have their limitation. On the basis of BLAST search, it is estimated

that approximately 20% of genes found in genome programs are novel sequences.

Therefore, how to develop a novel annotation tool to identify the possible func-

tional roles of these genes becomes a very important task. In addition, since the

functions of these novel sequences are yet to be identified, very little attention

has been drawn on these sequences.

Rapid adaptation to environmental challenge is essential for bacterial sur-

vival. To orchestrate their adaptive responses to changes in their surroundings,

bacteria mainly use so-called ’two-component regulatory systems’ (2CS) [7].

These systems are usually composed of a sensor kinase, which is able to detect

one or several environmental stimuli, and a response regulator, which is phospho-

rylated by the sensor kinase and which, in turn, activates the expression of genes

necessary for the appropriate physiological response. Sensor kinases (or histi-

dine kinases) usually possess two domains: an input domain, which monitors

environmental stimuli, and a transmitter domain, which auto-phosphorylates

following stimulus detection. A classical response regulator contains an amino-

terminally located conserved receiver domain that is phosphorylated by the

sensor kinase at a strictly conserved aspartate residue, leading to activation of

the carboxy-terminal effector or output domain [9, 10].

Because of its important functional roles and ubiquitous nature in most

bacterial and fungal species, 2CS have been considered as very good targets

in drug development [2]. In addition, 2CS also meet the following criteria for

drug development. Some of 2CS are critical for bacterial growth and coordinate

pathogenesis, including some problematic infection (eg. Biofilm formation).

The enzymatic activity of 2CS is assayable and homology is high at active site,

which lend itself to drug screening. 2CS are not found in humans that provides

selective basis over mammalian targets/processes. They are surface exposed and

are previously unexploited targets. Finally, there are multiple sets of 2CS in a

bacterial genome and hence with low expected resistance. Analysis of complete

4

bacterial genome sequences have shown that the number of these systems varies

considerably from one species to the next, from 0 in Mycoplasma spp., 38 in

the cyanobacterium Synechocystis [8], and 63 in Pseudomonas aeruginosa [11].

The functional role of most of the 2CS, however, remains elusive. For examples,

among the 63 2CS in P. aeruginosa, only 10 or so have been characterized [10].

The identification of the function of these 2CS would greatly facilitate not

only our understanding on the basic physiology and regulatory networks of

bacteria but also designing a way to prevent from causing disease in humans.

Traditionally transcription regulators are classified according to their helix-

turn-helix DNA binding motif and are assigned into families such as LysR or

LuxR. Most of the genes encoding the transcription regulator are located in the

upstream of their target genes and are transcribed from a divergent promoter in

a direction opposite from that of targeted genes. Sequence analysis of the tran-

scription regulators indicates that they are most likely derived from duplication

events from an ancestor and was later recruited and clustered together with the

target genes. Therefore, in this type of gene cluster, the transcription regulator

genes were evolved independently from their target genes. In contrast, the tar-

get genes regulated by transcription (response) regulator of a 2CS are generally

scattered in the genome, whereas the gene encoding response regulator and the

sensor are located within an operon.

It is therefore interesting to know whether the gene encoding regulatory pro-

tein and the gene encoding the sensor kinase in a 2CS were derived by duplica-

tion from an existing 2CS (the co-evolution) or they were evolved independently

and were assembled by recombination event later.

To address this question, we will need to know the evolutionary distance of

each regulatory protein encoding gene and each sensor-encoding gene of the 63

2CS. The two trees will then be integrated and those sensor and regulator genes

exhibit distinct relationship in a 2CS will be selected and analyzed further. In

this case, integration of the two trees not only is the key to reveal the secret of

2CS evolution, but also a challenging question in computational biology. One

way of extracting the useful clustering information that might later lead to

5

functional classifications of these 2CS from the regulator tree and the sensor

tree is to incorporate the evolutionary information from both trees.

3 Subtrees Comparison of Phylogenetic Trees

Biologists use the information contained in the DNA sequences of a collection

of organisms, or taxa, to infer the evolutionary relationships among those taxa.

These evolutionary relationships are generally represented by a labelled binary

tree, called a phylogenetic tree. Here a phylogenetic tree with n leaves is a

(rooted binary) tree such that all the leaf nodes are uniquely labelled from

1 to n. Given two n-leaf phylogenetic trees, we wish to explore the subtrees

relationships between subtrees of the two trees.

Consider n terminal nodes that represents n abstract objects constituting

the same set of leaf nodes within two (topologically different) evolutionary /

phylogenic trees, say T1 and T2. We call these two trees as paired trees. Note that

the deletion of any edge separates the tree into two disconnected subtrees, whose

leaf nodes are exactly two subsets of the leaf nodes, forming two partitions.

We consider the following combinatorial problems:

Definition 1 (k-agreement) Given a positive integer k and two (topologically

different) n-leave phylogenetic trees T1 and T1, the problem is to identify whether

there is an edge e1 in T1 and e2 in T2 whose deletion form the same partition

of the leaf nodes in both trees and one of the two partitions has exact size of k.

Note that it is trivial to identify 1-agreement (as well as n-agreement) nodes

from any given paired trees. On the other hand, not every parameter k leads to

a feasible solution. The rationale behinds the problem is the following.

Assuming that the paired trees do process a k-agreement subset (with size

k) of 2CS sequences, it follows that these k sequences have a very good chance

of forming a reasonable candidate for the clustering group, and hopefully these

genes would be functionally related to each others. Computationally, the k-

agreement problem can trivially solved by a polynomial time algorithm.

6

There are exactly (n− 1) internal nodes for a n-leaf (binary) tree; thus the

number of (rooted) subtrees is exactly n− 1. It follows that arbitrarily picking

two pairs of internal nodes, each from one of paired trees, constitutes totally

O(n2) possible pairings. For each pairing, a linear time algorithm can be used

to double check whether these two pairs form an agreement. The total time

needed for the trivial algorithm will be O(n3). More efficient algorithms are

attainable for this problem.

Besides the exact match solutions for the k-agreement problem, it will be

useful for biologists to have some sort of fuzzy measurement of two clusters of

genes. Many methodologies can be used for converting raw data into a meaning-

ful distance table. A commonly used similarity measure, which forms a distance

is the (normalized) cardinality of symmetric set difference [5].

Let A,B ⊂ S = {1, 2, . . . , n} be two clusters of genes set S. The symmetric

set difference, ∆(A,B), is defined as the following:

∆(A,B) = |A ∪B \A ∩B| = |A \B|+ |B \A|.

Further, the normalized cluster distance, d(A,B), is defined as the following:

d(A,B) =
∆(A,B)

|A|+ |B|

The normalized cluster distance between two sets is considered to be a rough

measurement of the degree of difference between them. Note that 0 ≤ d(A,B) ≤

1; d(A,B) = 0 if A = B, and d(A,B) = 1 if A ∩ B = ∅. In other words, the

smaller value of d(A,B) implies a greater similarity of A,B.

3.1 All Pairs Subtrees Comparison

Here we discuss the problem of all pairs subtree comparison. Given a rooted

leaf-labelled binary T with v being a (internal or leaf) vertex, we use L(v)

to denote the set of all descendent leaves of v in T . That is, L(v) = {x |

x a descendent of v}. Note that L(v) = {v} if v itself is a leaf. A naive, O(n3)-

time algorithm of computing all the normalized distances of all pairs of subtrees

of given paired sensor trees is illustrated at Figure 1.

7

Naive-All-Pair(T1, T2, n, k)

Input: A sensor kinase tree T1, a (response) regulator tree T2, with n
leaves.

Output: A list of k pairs of co-subtree (t1, t2)’s where t1 (t2) is a subtree
of T1 (T2). These k co-subtrees possess the smallest normalized
cluster distance.

Step 1: Let the A = {a1, a2, . . . , an−1} denote the n − 1 subtrees of T1

defined by the n−1 internal nodes of T1. Let B = {b1, b2, . . . , bn−1}
denote the n− 1 subtrees of T2. Let output list P ← ∅.

Step 2: For each (a, b) ∈ A×B, compute the normalized cluster distance
d(a, b) = |L(a) ∪ L(b) \ L(a) ∩ L(b)|/(|L(a)|+ |L(b)|).

Step 3: Select the k co-subtree with smallest normalized cluster distance
among all d(a, b)’s. Output these k pairs in non-decreasing order.

Figure 1: Computing the normalized cluster distance d(t1, t2)’s within a pair of
co-evolution trees.

The goal here is to compute all paired distances within O(n2) time. Note

that the total size of the outputs will be Θ(n2). An O(n2) time algorithm is thus

computationally optimal. The idea here is trying to find a recurrence formula

such that the normalized cluster distance of a parent node can be computed

from its children in constant time. Let u be a node of a phylogenetic tree T1,

and v, v1, v2 be 3 nodes of another phylogenetic tree T2, where v is the parent of

v1 and v2. Now the target is to compute ∆(u, v) from ∆(u, v1) and ∆(u, v2) in

constant time. Note that, for easier description, we use ∆(u, v) as a short-hand

notation of ∆(L(u), L(v)).

Lemma 1 (constant time ∆(A,B) calculation) Let A,B1, B2 be 3 sets with

B1 ∩B2 = ∅. It follows that ∆(A,B1 ∪B2) = ∆(A,B1) + ∆(A,B2)− |A|.

Proof. It is easily verified that ∆(X,Y) = |X|+ |Y |− 2|X ∩Y | for any two sets

X,Y . Now we have

∆(A,B1 ∪B2) = |A|+ |B1 ∪B2| − 2|A ∩ (B1 ∪B2)|

= |A|+ |B1|+ |B2| − 2|A ∩ (B1 ∪B2)|

= |A|+ |B1|+ |B2| − 2|A ∩B1| − 2|A ∩B2)|

8

All-Pair(T1, T2)
Input: Two phylogenetic trees T1 and T2 with leaves {1, 2, . . . , n}.
Output: All pairs ∆(u, v)’s for all u ∈ T1, v ∈ T2.

1 Compute |L(u)|’s, |L(u)|’s, level(u)’s, level(v)’s for all u ∈ T1, v ∈ T2.
2 for each u ∈ T1 in increasing order of level(u) do B bottom up.
3 for each v ∈ T2 in increasing order of level(v) do
4 if both u, v are leaf nodes then B initial condition.
5 ∆(u, v)← 0 if u = v; otherwise, ∆(u, v)← 2
6 else if u is a leaf then let v be the parent of v1 and v2;
7 ∆(u, v)← ∆(u, v1) + ∆(u, v2)− 1 (= |L(u)|)
8 else let u be the parent of u1 and u2;
9 ∆(u, v)← ∆(u1, v) + ∆(u2, v)− |L(v)|

Figure 2: Computing all pairs ∆(T1, T2)’s in O(n2) time.

= |A|+ |B1| − 2|A ∩B1|+ |A|+ |B2| − 2|A ∩B2)| − |A|

= ∆(A,B1) + ∆(A,B2)− |A|

since B1 ∩B2 = ∅. ¤

Note that Lemma 1 implies that ∆(u, v) can be calculated from ∆(u, v1) and

∆(u, v2) in constant time when |L(u)| is precomputed. Given a pair of phy-

logenetic trees T1 and T2, we can store at each node u ∈ T1, v ∈ T2 with its

associated descendants size |L(u)| and |L(v)|. Further, for each node u ∈ T1 we

can store an array consisting of ∆(u, ·)’s so that whenever we need to decide the

value d(u, v), it can be computed as d(u, v) = ∆(u, v)/(|L(u)|+ |L(v)|).

Theorem 1 Computing all paired subtree distances can be done in O(n2) time.

Proof. We propose an O(n2) time algorithm, All-Pair(T1, T2), shown in Fig-

ure 2. The algorithm essentially builds up all ∆(·, ·)’s in a bottom up manner.

The correctness of the algorithm is easily followed by Lemma 1 and the correct-

ness of the computation ordering.

To ensure the correct computation ordering, we introduce the following nota-

tions. Given a phylogenetic tree T and a node v ∈ T , the v-descendant subtree,

denoted by Tv, is the subtree induced of by all descendants of v in T ; here we

9

assume that v is a descendant of itself. The level of a node v in T , denoted by

level(v), is the height of Tv. Thus, whenever we traverse nodes of a phylogenetic

tree T in their increasing levels ordering, we ensure that the descendants of a

node v have already been visited before v.

It is easily seen that Step 1 of All-Pair can be computed in O(n) time

by a bottom up computation. A commonly used post order nodes traversal

of a tree suffices. Let v be the parent of v1, v2 in a tree T . It follows that

|L(v)| = |L(v1)|+ |L(v2)| with the initial condition that |L(v)| = 1 when v is a

leaf. Further, level(v) = max{level(v1), level(v2)}+ 1 with the initial condition

that level(v) = 1 when v is a leaf.

Also, it is clear that the inner steps of Step 4 to Step 9 take constant time

to compute each time. Since there are exactly O(n2) number of iterations for

the double loop (Step 2 and Step 3), it follows that All-Pair(T1, T2) finishes

in O(n2) time. ¤

3.2 Confluent Subtrees

The lowest common ancestor (LCA) between two nodes u and v in a tree is the

furthest node from the root node that exists on both paths from the root to u and

v. Harel and Tarjan [6] have shown that any n-node tree can be preprocessed

in O(n) time such that subsequently LCA queries can be answered in constant

time.

Let T be a phylogenetic tree with leaf nodes L. Given S ⊂ L, define

set Lca(S) = {Lca(x, y) | x 6= y ∈ S} as the collection of all (proper) low-

est common ancestors defined over S. It is easily verified (by induction) that

|Lca(S)| = |S| − 1 since T is a binary tree.

Definition 2 (confluent subtree) Let T be a phylogenetic tree with leaf nodes

L. Given A ⊂ L, the confluent subtree of A in T is a phylogenetic tree, denoted

by T↑A, with leaf nodes A and internal nodes lca(A). Further, u ∈ Lca(A) is

a parent of v in T↑A if and only if u is the lowest ancestor of v in T comparing

to any other node in Lca(A).

10

Confluent(T,A)
Input: A phylogenetic trees T with leaves L = {1, 2, . . . , n}, A ⊂ L.
Output: The confluent subtree of A in T , T↑A.

Preprocessing: Compute the tree ordering of L on T , and perform the Lca

constant time queries preprocessing [6].
Notations: p[·, T ′], left[·, T ′], right[·, T ′]: parent, left, right children links.

1 Let A = 〈v1, v2, . . . , vk〉 be nodes of A in the tree ordering.
2 Create a dummy node λ and let level[T, λ]← +∞ ; Push(S, λ)
3 for i← 1 to k − 1 do B visit each vi’s.
4 x← Lca(vi, vi+1) ; y ← vi

5 while level[x, T] > level[top[S], T] do y ← Pop(S)
6 Push(S, x) ; p[vi+1, T

′]← x ; p[y, T ′]← x ; p[x, T ′]← top[S]
7 left[x, T ′]← y ; right[x, T ′]← vi+1 ; right[top[S], T ′]← x
8 root[T ′]← right[λ, T ′] ; return T ′ as T↑A;

Figure 3: Computing the confluent subtree.

Let T be a phylogenetic tree with leaf nodes L. A post-order (pre-order, or

in-order) traversal of nodes of L within T defines a tree ordering of nodes on L.

Lemma 2 Let T be an n-node phylogenetic tree with leaf nodes L. The following

subsequent operation can be done efficiently after an O(n) time preprocessing.

Given a query set A ⊂ L, the confluent subtree T↑A can be constructed in O(|A|)

time if A is given in sorted tree ordering; otherwise, T↑A can be constructed in

O(|A| log log |A|) time.

Proof. We propose an O(|A|) time algorithm, Confluent(T,A), shown in Fig-

ure 3. The algorithm requires O(n) time preprocessing phase for building up

the tree ordering of L on T , and perform the Lca constant time queries prepro-

cessing [6]. Further, the input A ⊂ L is assumed to be listed according to the

tree ordering of L; otherwise, we can use the data structure of van Emde Boas

[12] for sorting these finite ranged integers in O(|A| log log |A|) time.

The correctness of the algorithm can be shown by an inductive argument.

It is easily verified that Confluent computes the correct confluent tree when

k = 2. For k ≥ 3, it suffices to consider the last vertex vk inserting into a

correctly computed confluent tree T↑(A\vk). Let i = k − 1; the situation is

11

...

root

...

...

x

v

i

v

i+1

y

t

...

T'

Figure 4: Inserting one node into a confluent tree.

illustrated in Figure 4. Note that the vertex x = Lca(vi, vi+1) must be a newly

created node since the given phylogenetic tree T is a full binary tree; i.e., each

internal node of T has exactly two children. Observe that the stack ordering

of S essentially encodes the ordering of the right fringe of T↑(A\vk). Since the

inserted nodes are given in the tree ordering of L, vi+1 and x must be the newly

admitted members of the right fringe of T↑A; that is, x shall be inserted into

the stack S. It follows that Step 5 locates the correct position that x belongs

in. Finally, Step 6 and Step 7 perform the corresponding operations setting up

the tree links in T ′.

In order to simplify the algorithm, a dummy node λ is set up so that the

empty stack (S) situation, when x becomes the new root of T ′, is avoided. The

final correct confluent tree is obtained after the correction of the final Step 8.

To justify that Confluent(T,A) takes O(|A|) time, here we show that Step

3 to Step 7 can be done in O(|A|) time. The total number of operations of the

algorithm is clearly bounded by O(|A|) except for the while-loop body of Step

5. This can be shown by a simple amortized analysis [3]. In the following, we

show that the amortized cost of the while-loop is a constant. Therefore, the

overall time required by the loop is O(|A|).

We define the potential function of S after the jth iteration of the for-loop

(i.e. Steps 3 to 7) to be Φ(j), i.e. the numbers of elements within the stack

S. Let us compute the amortized cost of the operations done by Step 5 in this

jth iteration. Suppose that the number of elements in S is decreased by tj in

this period. Then the actual cost of the operations is tj + 1. Observing that

12

Φ(j) = Φ(j−1)−tj +1, the change of the potential of S during the jth iteration

is

Φ(j)− Φ(j − 1) = 1− tj .

The amortized cost is therefore calculated as

t̂j = tj + 1 + Φ(j)− Φ(j − 1) = 2.

In other words, we deposit a credit (as a unit of the potential of S) whenever

we push an element into S (Step 6). Later on, when the algorithm needs to pop

elements of S at the while-loop, the cost can be charged to the pre-deposited

credits. Since exactly |A| credits would be deposited in the entire process, the

while-loop spends at most overall O(|A|) time. ¤

3.3 Nearest Subtrees and Total agreement subtrees

Here we discuss the problem of Relative Nearest Subtrees.

Definition 3 (nearest subtree) Let T be a phylogenetic tree with leaf nodes

L. Given A ⊂ L, a node (internal or leaf) v ∈ T (inducing Tv) is the nearest

subtree of A in T if (∀x ∈ T) (d(L(v), A) ≤ d(L(x), A)).

By utilizing Lemma 2, we can efficiently solve the nearest subtrees problem.

Theorem 2 Let T be an n-leaf phylogenetic tree with leaf nodes L. Given a

collection of pairwise disjointed subsets of L, S = {A1, A2, . . . , Aj}, the nearest

subtrees of all Ai’s on T can be found in totally O(n) time.

Proof. We propose an O(n) time algorithm, Nearest(T, S), shown in Figure 5.

For each Ai, the algorithm essentially computes all values of d(Ai, Tv)’s and find

one with the smallest value. The correctness of the algorithm follows from the

fact that any node v /∈ Lca(Ai) of T can not have the smallest cluster distance

to Ai. The reason is that, if v /∈ Lca(Ai), one of two subtrees of Tv (with parent

v) contains leaves that are completely disjointed with Ai. That is, the other

subtree shall have a smaller distance. Thus, it suffices to consider only nodes of

Lca(Ai) or Confluent(T,Ai).

13

Nearest(T, S)
Input: A phylogenetic trees T with leaves L, S = {A1, A2, . . . , Aj}, Ai ⊂ L.
Output: The nearest subtrees of Ai’s in T .

1 Compute the tree ordering of L on T and the Lca queries preprocessing.
2 Sort nodes of Ai’s in the tree ordering.
3 Compute the subtree sum s[v, T]’s for each v ∈ T ; Q← ∅
4 for i← 1 to |S| do B visit each Ai’s.
5 Ti ← Confluent(T,Ai)
6 Compute the subtree sum s[v, Ti]’s for each v ∈ Ti.
7 B Find the node v in Ti with the maximum d(Ai, Tv).

vi ← argmax{d(Ai, Tv) = 1− 2s[v, Ti]/(s[v, T] + |Ai|) | v ∈ Ti}
8 Add vi into output queue Q
9 return Q, the nearest subtrees of Ai’s in T

Figure 5: Computing the nearest subtrees.

The algorithm requires O(n) time preprocessing phase for building up the

tree ordering of L on T , and perform the Lca constant time queries prepro-

cessing [6]. Further, Step 2 sort each Ai ⊂ L into the tree ordering of L. We

describe briefly how the Step 2 can be done in total O(n) time by using an

indexed bucket array. Maintain an integer array a[1..n] with size n. Initially, all

a[·] ← 0, storing zeros. Then, for each vertex v of Ai, we store in a[id[v]] ← i.

Finally, for each a[i], Append(Aa[i], i). It is clear that the process correctly sort

the elements of Ai in O(n) time. Step 3 computes the subtree sum of T , which

can be easily done by a linear traversal of T in O(n) time. That is, node x being

the parent of y, z, let s[x]← s[y] + s[z]; a leaf node x is initialized by s[x]← 1.

Step 5 finds for each Ai its corresponding confluent subtree in T in O(|Ai|)

time by Lemma 2. Step 6 computes the subtree sum of Ti in O(|Ai|) time.

Step 7 finds for each set Ai its corresponding nearest subtree by examine each

vertex of the confluent subtree Ti in O(|Ai|) time with smallest cluster distance.

Note that the cluster distances, d(Ai, Tv), is exactly ∆(Ai, L(Tv))/|Ai|+|L(Tv)|.

However, recall that ∆(X,Y) = |X| + |Y | − 2|X ∩ Y | for any two sets X,Y .

It follows that d(Ai, Tv) = 1 − 2|Ai ∩ L(Tv)|/(|Ai| + |L(Tv)|), which is just

1−2s[v, Ti]/(s[v, T]+ |Ai|). Thus d(Ai, Tv) is just a constant time computation.

14

It follows that the total time spent in the for loop body (Step 5 to Step 8) is

bounded by
∑|S|

i=1 O(|Ai|) = O(n). ¤

With the required technical details at hand, we are ready to show that the

k-agreement problem can be solved in O(n) time.

Corollary 3 Given a positive integer k and two n-leaf phylogenetic trees T1

and T1, finding whether there are subtrees of T1 and subtrees of T2 with same

set of leaves having a exact size of k can be done in O(n) time.

Proof. As discussed in the proof of Theorem 2, we can calculate the subtree

sums for nodes of T1 in O(n) time. Let v1, v2, . . . , vm be nodes with subtree sum

exactly k. Note that, if such nodes can not be found, the algorithm completes

and reports null answer. Note that S = {LT1
(v1), LT1

(v2), . . . , LT1
(vm)} is a

collection of pairwise disjointed subsets of leaves of T2. By Theorem 2, we can

find their nearest subtrees in T2 in O(n) time. Note that a node vi with its

paired nearest subtree constitutes a total agreed pair if their distance is zero.

¤

4 Co-evolution Genes Classfication

Gene duplication event is commonly occurred in bacteria that generate many

gene families. These gene duplication events raise a very interesting question:

does gene duplication tend to occur within a relative short distance on a bacte-

rial genome? Despite this is a reasonable assumption; there has not been solid

evidence to support this notion presumably due to lack of suitable testing sys-

tems. In bacteria, the number of member in a bacterial gene family is low and

the repetitive sequences are too conserved, both are non-informative in genetic

analysis. With more than 60 different 2CS in P. aeruginosa genome, it provides

a great opportunity for us to test this interesting hypothesis. In this study, a

dot-matrix plot will be created, with the X-axis being the physical distance, and

Y-axis being the evolutionary distance, between two comparing 2CS.

15

It is possible that, instead of all 2CS whose sequences possess a correlation

between their physical and evolutionary distances. Some subset of 2CS, presum-

ably functionally related, could possess the correlation between their physical

and evolutionary distances. Identifying these measurement-correlated groups

could be a computational consumption problem. The following combinatorial

optimization problem is considered:

Definition 4 (k-correlation) Consider n nodes being associated with two dif-

ferent distance measurements M1 andM2; an n×n squared distance matrix rep-

resents each measurement. These two measurements are called dual measures.

The difference of two squared matrix can be defined by d(M1,M2) = |M1−M2|,

or some other bio-meaningful functions. Note that a selection of k nodes, A ⊂ S,

from the n-set S, produces an induced measurement from the given distance ma-

trix; the induced matrix is denoted by MA. The problem is, for a given param-

eter k, to identify the k-node, A ⊂ S, such that the difference d(MA
1 ,M

A
2) is

minimized.

Here we show that this combinatorial problem is intractable even when the

distances measurements consist of only two different real numbers.

Theorem 4 The decision version of k-correlation problem is NP-complete.

Proof. The decision version of k-correlation problem is clearly in NP. Here we

show that it is NP-hard by a reduction from the independent set (IndSet) [4]

of simple graphs to this problem.

Given an instance of IndSet, G = (V,E), we construct two distance matrices

(M1,M2) such that (M1,M2) has k-node, A ⊂ S with difference d(MA
1 ,M

A
2) = 0

if and only if G has an independent set of size k.

The construction is straightforward. Let M1 be the 0-1 adjacent matrix of

G, and M2 be an all zeros matrix. It is readily verified that d(MA
1 ,M

A
2) = 0 if

and only if G has an independent set of size k. ¤

It will be interesting to know whether the problem can be reasonably approxi-

mated under some special constraints. Note that our k-agreement problem can

16

be a good candidate of approximating the k-correlation problem if we first con-

struct two phylogenetic trees from the two given measurements and then apply

the k-agreement algorithm for finding probable k’s.

5 Concluding Remarks

We thank Tsan-sheng Hsu for helpful conversations concerning the all pairs

distance problem in Section 3.1.

In this paper, we present algorithmic results concerning the bioinformatic

applications in functional analysis and classifications on bacterial genome.

We show that computing all pairs normalized cluster distances between all

paired subtrees of two trees can be computationally optimally done in O(n2)

time in Theorem 1. By using the concept of confluent subtree, we are able to

show that finding nearest subtrees for a collection of pairwise disjointed subsets

of leaves can be done in O(n) time in Theorem 2. As a corollary, the k-agreement

problem is solved in O(n) time. Furthermore, we show that the k-correlation

problem is NP-complete in Theorem 4.

Several interesting topics to be discussed in the future include identifying

novel 2CS in other bacteria genomes as well as in eucaryotic genomes, clustering

analysis of 2CS for functional prediction of uncharacterized genes, and 2CS co-

evolutionary analysis.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic

local alignment search tools. J. Mol. Biol., 215:403–410, 1990.

[2] J. F. Barret and J. A. Hoch. Two-component signal transduction as a

target for microbial anti-infective therapy. Antimicrob. Agent. Chemo.,

42:1529–36, 1998.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT

Press, 1990.

17

[4] M.R. Garey and D.S. Johnson. Computers and Intractability – A Guide to

the Theory of NP-Completeness. Freeman, New York, 1979.

[5] D. Gilbert, D. Westhead, N. Nagano, and J. Thornton. Motif–based search-

ing in tops protein topology databases, 1999.

[6] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common

ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[7] J.A. Hoch and T.J. Silhavy. Two-Component Signal Transduction. ASM

Press, 1995.

[8] T. et al. Mizuno. Compilation of all genes encoding bacterial two-

component transducers in the genome of the cyanobacterium, synechocystis

sp. strain PCC 6803. DNA Res., 3:407–414, 1996.

[9] J.S. Parkinson and E.C. Kofoid. Communication modules in bacterial sig-

nalling proteins. Annu. Rev. Genet., 26:71–112, 1992.

[10] A. Rodrigue, Y. Quentin, A. Lazdunski, V. Méjean, and M. Foglino. Two-

component systems in pseudomonas aeruginosa: why so many? Trends

Microbiol., 8:498–504, 2000.

[11] C.K. et al. Stover. Complete genome sequence of pseudomonas aeruginosa

PAO1, an opportunistic pathogen. Nature, 406:959–964, 2000.

[12] P. van Emde Boas. Preserving order in a forest in less than logarithmic

time and linear space. Information Processing Letters, 6:80–82, 1977.

18

