
Efficient Algorithms for Locating the
Length-Constrained Heaviest Segments, with

Applications to Biomolecular Sequence Analysis
(Extended Abstract)

Yaw-Ling Lin ?, Tao Jiang ??, and Kun-Mao Chao ? ? ?

Abstract.
We study two fundamental problems concerning the search for interesting re-
gions in sequences: (i) given a sequence of real numbers of length n and an
upper bound U , find a consecutive subsequence of length at most U with
the maximum sum and (ii) given a sequence of real numbers of length n and
a lower bound L, find a consecutive subsequence of length at least L with
the maximum average. We present an O(n)-time algorithm for the first prob-
lem and an O(n log L)-time algorithm for the second. The algorithms have
potential applications in several areas of biomolecular sequence analysis in-
cluding locating GC-rich regions in a genomic DNA sequence, post-processing
sequence alignments, annotating multiple sequence alignments, and computing
length-constrained ungapped local alignment. Our preliminary tests on both
simulated and real data demonstrate that the algorithms are very efficient and
able to locate useful (such as GC-rich) regions.

Keywords: Algorithm, efficiency, maximum consecutive subsequence, length
constraint, biomolecular sequence analysis, ungapped local alignment.

1 Introduction

With the rapid expansion in genomic data, the age of large-scale biomolecular
sequence analysis has arrived. An important line of research in sequence anal-
ysis is to locate biologically meaningful segments, e.g. conserved segments and
GC-rich regions, in DNA sequences. Conserved segments of a DNA sequence
are slow changing sequences that form strong candidates for functional elements
both in protein coding and regulatory regions of genes [7, 10, 15]. Regions of a
DNA sequence that are rich in nucleotides C and G are usually significant in
gene recognition. In order to locate these interesting segments, many combinato-
rial and probabilistic techniques have been proposed. Perhaps the most popular
ones are window-based. That is, a window of a fixed length is moved down the
? Department of Computer Science and Information Management, Providence Uni-

versity, 200 Chung Chi Road, Shalu, Taichung County, Taiwan 433. e-mail:
yllin@pu.edu.tw

?? Department of Computer Science and Engineering, University of California River-
side, Riverside, CA 92521-0144, USA. e-mail: jiang@cs.ucr.edu

? ? ? Department of Life Science, National Yang-Ming University, Taipei, Taiwan 112.
e-mail: kmchao@ym.edu.tw



sequence/alignment and the content statistics are calculated at each position
that the window is moved to [12, 14]. Since an optimal region could span several
windows, the window-based approach might fail in finding the exact locations of
some interesting regions.

In this paper, we study two fundamental problems concerning the search for
the “heaviest” segment of a numerical sequence that naturally arises in the above
applications. Our main results, as described below, are efficient algorithms for
locating the length-constrained heaviest segments in a given sequence or align-
ment. The algorithms have potential applications in locating GC-rich regions
in a genomic DNA sequence, post-processing sequence alignments, annotating
multiple sequence alignments, and computing length-constrained ungapped local
alignment.

Let A = 〈a1, a2, . . . , an〉 be a sequence of real numbers and U ≤ n a positive
integer, the objective of our first problem is to find a consecutive subsequence
of A of length at most U such that the sum of the numbers in the subsequence
is maximized. By using a technique of partitioning each suffix of A into minimal
left-negative (consecutive) subsequences, we propose an O(n)-time algorithm for
finding the length-constrained maximum sum consecutive subsequence of A. The
algorithm can be used to find GC-rich regions and efficiently construct ungapped
local alignments with length constraints in O(mn) time, where m,n are the
lengths of the two input sequences being aligned, as explained in the next section.
We note in passing that a linear-time algorithm for finding the maximum sum
consecutive subsequence with length at least L can be easily obtained [11] by
extending the dynamically algorithm for the standard maximum sum consecutive
subsequence problem in [6].

An alternative measure of the weight of the target segment that we consider is
as follows. Given a sequence of real numbers, A = 〈a1, a2, . . . , an〉, and a positive
integer L ≤ n, the goal is to find a consecutive subsequence of A of length at least
L such that the average of the numbers in the subsequence is maximized. We
propose a novel technique to partition each suffix of A into right-skew segments of
strictly decreasing averages, and based on this partition, we devise an O(n log L)-
time algorithm for locating the maximum average consecutive subsequence of
length at least L. 1 The algorithm is expected to have applications in finding GC-
rich regions in a genomic DNA sequence, postprocessing sequence alignments,
and annotating multiple sequence alignments.

Observe that both problems studied in this paper have straightforward dy-
namic programming algorithms with running time proportional to the product
of the input sequence length n and the length constraint (i.e. U or L). Such
algorithms are perhaps fast enough for sequences of small lengths, but can be
too slow for instances in some biomolecular sequence analysis applications, such
as finding GC-rich regions and post-processing sequence alignments, where long
genomic sequences are involved. Our above algorithms would be able to handle
genomic sequences of length up to millions of bases with satisfactory speeds, as

1 Note that, when there is no length constraint, finding the maximum average consec-
utive subsequence is equivalent to finding the maximum element.



demonstrated in the preliminary experiments. The heaviest segment problems
that we study here are mostly motivated by their applications in several ar-
eas of biomolecular sequence analysis, such as locating GC-rich regions in gene
recognition and comparative genomics [12, 14, 11, 8], post-processing sequence
alignments [4, 5, 13, 3, 17, 18], annotating multiple sequence alignments [15, 3, 1],
as well as computing ungapped local alignments with length constraints [1, 3, 2].

The rest of the paper is organized as follows. We present the algorithm for the
length-constrained maximum sum consecutive subsequence problem in Section
2 and the algorithm for the length-constrained maximum average consecutive
subsequence problem in Section 3. Some preliminary experiments on the speed
and performance of the algorithms are given in Section 4. Section 5 concludes
the paper with a few remarks.

Due to the page limit, many applications of biomolecular sequence analysis
and proofs of all lemmas and corollaries are omitted in the extended abstract
and provided in the appendix.

2 Maximum Sum Consecutive Subsequence with Length
Constraints

Given a sequence of real numbers, A = 〈a1, a2, . . . , an〉, and a positive integer
U ≤ n, the goal is to find a consecutive subsequence of A of length at most U such
that the sum of the numbers in the subsequence is maximized. It is straightfor-
ward to design a dynamic programming algorithm for the problem with running
time O(nU). We also note in passing that since there is an O(n log2 n)-time al-
gorithm for finding the maximum sum path on a tree with length at most U
[16], the above problem can also be solved in O(n log2 n) time. Here, we present
an algorithm running in O(n).

Let A1, A2, . . . , Ak be disjoint (consecutive) subsequences of A forming a
partition of A, i.e. A = A1A2 · · ·Ak. Ai is called the ith segment of the partition.
Denote w(A) =

∑
ai∈A ai as the sum of the sequence. The following definition

is a key of our linear-time construction.

Definition 1. A real sequence A = 〈a1, a2, . . . , an〉 is left-negative if and only
if the sum of each proper prefix 〈a1, a2, . . . , ai〉 is negative or zero for all 1 ≤
i ≤ n − 1; that is, w(〈a1, a2, . . . , ai〉) ≤ 0 for all 1 ≤ i ≤ n − 1. A partition of
the sequence A = A1A2 · · ·Ak is minimal left-negative if each Ai, 1 ≤ i ≤ k,
is left-negative, and, for each 1 ≤ i ≤ k − 1, the sum of Ai is positive, i.e.
w(Ai) > 0.

For example, the sequence 〈−4, 1,−2, 3〉 is left-negative while the sequence
〈5, -3, 4, -1, 2, −6〉 is not. On the other hand, the partition 〈5〉〈−3, 4〉〈−1, 2〉〈−6〉
of the latter sequence is minimal left-negative. Note that any singleton sequence
is trivially left-negative by definition. Furthermore, it can be shown that any
sequence can be uniquely partitioned into minimal left-negative segments.

Lemma 1. Every sequence of real numbers can be uniquely partitioned into min-
imal left-negative segments.



For any sequence A = 〈a1, a2, . . . , an〉, each suffix sequence of A, 〈ai, . . . , an〉,
defines a minimal left-negative partition, denoted as A

(i)
1 A

(i)
2 · · ·A(i)

k , for some
k ≥ 1. Suppose that A

(i)
1 = 〈ai, . . . , ap[i]〉. Then, p[i] is called the left-negative

pointer of index i. Note that the left-negative pointers of A implicitly encode
the minimal left-negative partition of each suffix 〈ai, . . . , an〉 of A. An efficient
algorithm for computing the left-negative pointers as well as the minimal left-
negative partition of each suffix of A is illustrated in Figures 1 and 2.

Lemma 2. The algorithm MLN-Point given in Figure 1 finds all left-negative
pointers for a length n sequence in O(n) time.

MLN-Point(A)
Input: A real sequence A = 〈a1, a2, . . . , an〉.
Output: n left-negative pointers of A, encoded by array p[·].
1 for i ← n downto 1 do
2 p[i] ← i; w[i] ← ai; B Each 〈ai〉 alone is left-negative.
3 while (p[i] < n) and w[i] ≤ 0 do
4 w[i] ← w[i] + w[p[i] + 1]
5 p[i] ← p[p[i] + 1]

Fig. 1. Set up the left-negative pointers.

Report-MLN-Part(i)
Input: i denoting the suffix sequence 〈ai, ai+1, . . . , an〉.
Output: the minimal left-negative partition of the suffix.
1 while i ≤ n do B Reports (i, j) as a left-negative segment 〈ai, . . . , aj〉.
2 Output (i, p[i]); i ← p[i] + 1

Fig. 2. Compute the minimal left-negative partition of a suffix sequence.

We are ready to show that the length-constrained maximum sum consecutive
subsequence problem can be solved in linear time.

Theorem 1. Given a length n real sequence, finding the consecutive subsequence
of length at most U with the maximum sum can be done in O(n) time.

Proof. We propose an O(n) time algorithm, MSLC(A,U), as shown in Figure 3.
In the algorithm, the variable i is the current working pointer scanning elements
of A from left to right. The pair (i, j) represents a consecutive subsequence of A,
〈ai, . . . , aj〉, currently being considered as a candidate maximum sum consecutive
subsequence satisfying the length constraint. The algorithm essentially looks at



MSLC(A, U)
Input: A real sequence A = 〈a1, a2, . . . , an〉, and an upper bound U .
Output: The maximum consecutive subsequence of A with length at most U .
1 i ← 1
2 while ai ≤ 0 and i ≤ n do i ← i + 1
3 if i = n then B Elements a1, a2, . . . , an−1 are all negative.
4 Find the maximum element in A and return.
5 MLN-Point(A) B Compute left-negative pointers. See Fig 1.
6 j ← i; ms ← 0 B Initialization.
7 while i ≤ n do
8 while ai ≤ 0 and i ≤ n do i ← i + 1
9 j ← max(i, j)
10 while j < n and p[j + 1] < i + U and w[j + 1] > 0 do j ← p[j + 1]
11 if Sum(i, j) > ms then mi ← i; mj ← j; ms ← Sum(i, j) B Update max.
12 i ← i + 1
13 return (mi, mj, ms)

Sum(i, j)

Output: The sum of the subsequence 〈ai, ai+1, . . . , aj〉,
Pj

x=i ax, is just sj − si−1.

The prefix sums, sk =
Pk

i=1 ai, s0 = 0, can be pre-computed in O(n) time.

Fig. 3. Finding the maximum sum consecutive subsequence with length constraint.

every positive ai and identifies its corresponding good partner, aj , such that (i, j)
constitutes a candidate solution.

Note that the sum of any proper prefix of a left-negative segment is negative
by definition. The correctness of the algorithm then follows from the fact that
a left-negative segment is atomic in the sense that when it is combined with
preceding left-negative segments, it is always combined as a whole; for otherwise
the addition of any proper prefix of the segment would only decrease the sum
of the combined segment. This observation justifies the condition checking and
grouping in Step 10 of the algorithm.

The time complexity of the algorithm is O(n) because the good-partner
pointer j only advances forward as the scanning pointer i advances. It follows
that the total work spent on Step 10 is bounded by O(n). It is not hard to verify
that the remaining part of the algorithm spends at most O(n) time. ¤

The algorithm MSLC can be combined with Huang’s technique [11] to yield
a linear-time algorithm that could handle both a length upper bound and a
length lower bound simultaneously.

Corollary 1. Given a length n real sequence and positive integers L ≤ U , find-
ing the consecutive subsequence of length between L and U with the maximum
sum can be done in O(n) time.



3 Maximum Average Consecutive Subsequence with
Length Constraints

Given a sequence of real numbers, A = 〈a1, a2, . . . , an〉, and a positive integer
L, 1 ≤ L ≤ n, our goal is now to find a consecutive subsequence of A with
length at least L such that the average value of the numbers in the subsequence
is maximized.

Recall that w(A) =
∑n

i=1 ai is the sum of elements of A. Furthermore, let
d(A) = |A| = n, be the length of the sequence A. The average of A is defined as
µ(A) = w(A)/d(A). The definition below is the key to our construction.

Definition 2. A sequence A = 〈a1, a2, . . . , an〉 is right-skew if and only if the
average of any prefix 〈a1, a2, . . . , ai〉 is always less than or equal to the aver-
age of the remaining suffix 〈ai+1, ai+2, . . . , an〉. A partition A = A1A2 · · ·Ak

is decreasingly right-skew if each segment Ai of the partition is right-skew and
µ(Ai) > µ(Aj) for any i < j .

The following are some useful properties of right-skew segments and their
averages.

Lemma 3 (Combination). Let A,B be two sequences with µ(A) < µ(B).
Then µ(A) < µ(AB) < µ(B).

Lemma 4. Let A,B be two right-skew sequences with µ(A) ≤ µ(B). Then the
sequence AB is also right-skew.

Lemma 5. Every real sequence A = 〈a1, a2, . . . , an〉 has a unique decreasingly
right-skew partition.

For a sequence A = 〈a1, a2, . . . , an〉, each suffix of A, 〈ai, . . . , an〉, defines a
decreasingly right-skew partition, denoted as A

(i)
1 A

(i)
2 · · ·A(i)

k , for some k ≥ 1.
Suppose that A

(i)
1 = 〈ai, . . . , ap[i]〉, where p[i] is called the right-skew pointer of

index i. Note that the right-skew pointers of A implicitly encode the decreas-
ingly right-skew partitions for each suffix 〈ai, . . . , an〉 of A. Given the right-skew
pointers, one can easily report the decreasingly right-skew partitions of a suffix
as illustrated in Figure 4. Interestingly, we can compute all right-skew pointers

Report-DRS-Part(i, p[·])
Input: i denoting the suffix sequence 〈ai, ai+1, . . . , an〉; p[·]: right-skew pointers of A.
Output: The decreasingly right-skew partition of the suffix.
1 while i ≤ n do B Reports 〈ai, . . . , aj〉 as a right-skew segment.
2 Output (i, p[i]); i ← p[i] + 1

Fig. 4. Report the decreasingly right-skew partition of a suffix sequence.

in linear time.



Lemma 6. The algorithm DRS-Point given in Figure 5 computes all right-
skew pointers for a length n sequence in O(n) time.

DRS-Point(A)
Input: A sequence A = 〈a1, a2, . . . , an〉.
Output: n right-skew pointers of A, encoded by array p[·].
1 for i ← n downto 1 do
2 p[i] ← i; w[i] ← w(ai); d[i] ← d(ai); B Each 〈ai〉 alone is right-skew.
3 while (p[i] < n) and (w[i]/d[i] ≤ w[p[i] + 1]/d[p[i] + 1]) do
4 w[i] ← w[i] + w[p[i] + 1]
5 d[i] ← d[i] + d[p[i] + 1]
6 p[i] ← p[p[i] + 1]

Fig. 5. Set up the right-skew pointers in O(n) time.

The next lemma is first presented in [11]. We include it here for completeness.

Lemma 7. Given a real sequence A, let B denote the shortest consecutive sub-
sequence of A with length at least L such that the average is maximized. Then
the length of B is at most 2L− 1.

In searching for the maximum average consecutive subsequence, our con-
struction will need to locate, for each element ai, its corresponding partner,
aj , such that the segment 〈ai, . . . , aj〉 constitutes a candidate solution. Suppose
that segment A = 〈ai . . . aj〉 is being currently considered a candidate solution,
where j − i + 1 ≥ L, and B = 〈aj+1, . . . , ap[j+1]〉 is the first right-skew segment
to the right of A. We consider if the segment A should be extended to include
some prefix (or the whole) of the segment B. The following lemma shows that A
should be combined with the segment B as a whole if and only if µ(A) < µ(B).
In other words, the segment B = 〈aj+1, . . . , ap[j+1]〉 is atomic (for A).

Lemma 8 (Atomic). Let A,B, C be three real sequences with µ(A) < µ(B) <
µ(C). Then µ(AB) < µ(ABC).

The next lemma allows us to perform binary search in the decreasingly right-
skew partition of a suffix sequence when trying to find the “optimal” extension
from a candidate solution segment.

Lemma 9 (Bitonic). Let P be a (prefix) real sequence, and A1A2 · · ·Am the
decreasingly right-skew partition of a sequence A. Suppose that µ(PA1 · · ·Ak) =
max{µ(PA1 · · ·Ai)| 0 ≤ i ≤ m}. Then µ(PA1 · · ·Ai) > µ(Ai+1) if and only if
i ≥ k.

Now we are ready to state the main result of this section.



MaxAvgSeq(A, L)
Input: A real sequence A = 〈a1, a2, . . . , an〉 and a lower bound L.
Output: The maximum average consecutive subsequence of A of length

at least L.
1 DRS-Point(A) B Compute the right-skew pointers, see Fig 5.
2 for i ← 1 to n− L + 1 do
3 j ← i + L− 1
4 if µ(i, j) < µ(j + 1, p[j + 1]) then j ← Locate(i, j) B Move j.
5 g[i] ← j
6 return The maximum µ(i, g[i]) pair.

µ(i, j) = Sum(i, j)/(j − i + 1) is the average of segment 〈ai, . . . , aj〉.
Locate(i, j): Binary search in the list: 〈µ(i, j(0)), . . . , µ(i, j(L))〉, where j(k)

is defined recursively: j(0) = j, j(k) = min{p[j(k−1) + 1], n}.

Fig. 6. Finding the maximum average consecutive subsequence with length constraint.

Theorem 2. Given a length n real sequence, finding the consecutive subsequence
of length at least L with the maximum average can be done in O(n log L) time.

Proof. We propose an O(n log L) time algorithm, MaxAvgSeq(A,L), as shown
in Figure 6. The pointer i scans elements of A from left to right. The pair
(i, j) represents a segment of A, 〈ai, . . . , aj〉, currently being considered as the
candidate solution. For each element ai, the algorithm finds its corresponding
good partner, aj , such that (i, j) constitutes a candidate solution.

Observe that right-skew segments are atomic in the sense that it is always
better to add a whole right-skew segment in an extension process than to add
a proper prefix, as shown in Lemma 8. Thus the possible good partners will be
the right endpoints of the right-skew segments in the decreasingly right-skew
partition of the suffix sequence 〈aj+1, . . . , an〉.

Let j(k) denote the right endpoint of the kth right-skew segment in the suf-
fix sequence 〈aj+1, . . . , an〉. Note that j(k) can be defined recursively using the
formula: j(0) = j and j(k) = min{p[j(k−1) + 1], n}. By Lemma 7, there exists a
maximum average segment whose length is at most 2L−1. Thus, the correctness
of algorithm MaxAvgSeq(A, L) follows if Locate(i, j) correctly computes the
optimal j∗ such that µ(i, j∗) = max{µ(i, j(k))|0 ≤ k ≤ L}, where µ(i, j) denotes
the average of segment 〈ai, . . . , aj〉. This is explained along with the following
time complexity analysis of algorithm Locate.

To prove that the algorithm MaxAvgSeq runs in O(n log L) time, it suffices
to prove that algorithm Locate finds the (restricted) good partner j∗ of i in
O(log L) time. The key idea used in the algorithm is as follows. Although explor-
ing the entire list 〈j(1), . . . , j(L)〉 to find the (restricted) good partner requires
O(L) time, Lemma 9 suggests that we may be able to find j∗ by a binary search
without having to generate the entire list 〈j(1), . . . , j(L)〉. To do so, we need main-
tain dlog Le pointer-jumping tables p(k)[1..n], 1 ≤ k ≤ dlog Le. Let p(0)[i] = p[i]
and p(k+1)[i] = min{p(k)[p(k)[i] + 1], n} be defined recursively. Intuitively, one



Locate(i, j)
Input: A prefix subsequence 〈ai, . . . , aj〉 of A.
Output: The maximum average subsequence with prefix 〈ai, . . . , aj〉 and length at

most 2L− 1.
1 for k ← dlog Le downto 0 do
2 if j ≥ n or µ(i, j) ≥ µ(j + 1, p[j + 1]) then return j

3 if p(k)[j + 1]) < n and µ(i, p(k)[j + 1]) < µ(p(k)[j + 1] + 1, p[p(k)[j + 1] + 1])

then j ← p(k)[j + 1]
4 if j < n and µ(i, j) < µ(j + 1, p[j + 1]) then j ← p[j + 1] B Final step.
5 return j∗ = j

Fig. 7. Finding the maximum average consecutive subsequence with prefix 〈ai, . . . , aj〉
and length at most 2L− 1.

pointer jump from j to p(k)[j +1] is equivalent to 2k original pointer jumps from
j to j(2k). Note that, these p(k)[1..n] tables can be pre-computed with an overall
time complexity of O(n log L).

Now we explain how the binary search performed in Steps 1 through 3 of
Locate(i, j) for finding j∗ works. Let j∗ = j(`) for some 0 ≤ ` ≤ L. Then
the problem of finding j∗ can be thought of identifying an unknown binary
string (the binary encoding of `) of at most dlog Le bits. In the algorithm, we
identify the bits one by one from the (dloge − 1)th (the most significant bit)
down to the 0th (the lowest) bit, and for each kth bit, we check if µ(i, p(k)[j +
1]) < µ(p(k)[j + 1] + 1, p[p(k)[j + 1] + 1]) using the pointer-jumping tables. The
bitonicity property in Lemma 9 can be used to determine whether the current
index j(`) under consideration has surpassed the desired j∗. Note that, Step 4
of Locate(i, j) makes a final check on the result since the value of index j at
the moment can be one step short of the optimal index value j∗ = j(`) for some
even number `.

Therefore, Locate(i, j) finds a (restricted) good partner of i in O(log L)
time. It follows that the algorithm MaxAvgSeq(A,L) runs in at most O(n log L)
time since Step 4 of the algorithm takes O(log L) time, and the precomputation
of the jumping tables also takes at most O(n log L) time. ¤

4 Implementation and Preliminary Experiments

We have implemented a family of programs for locating the length-constrained
heaviest segments, based on the algorithms described in this paper. Specifically,
five programs are discussed below:

– mslc: Given a real sequence of length n and an upper bound U , this program
locates the maximum-sum subsequence of length at most U in O(n)-time.

– mslc slow: A brute-force O(nU)-time version of mslc.
– mavs: Given a real sequence of length n and a lower bound L, this program

locates the maximum-average subsequence of length at least L in O(n log L).



– mavs slow: A brute-force O(nL)-time version of mavs.
– mavs linear: Instead of finding a good partner by binary search, as done in

mavs, this program linearly scan right-skew segments for the good partner-
ship. In the worst case, the time complexity is O(nL). However, our empirical
tests showed that it ran faster than mavs in most cases.

Table 1 summarizes the comparative evaluation of the five programs on a
random integer sequence ranged from -50 to 50 of length 1,000,000. These ex-
periments were carried out on a Sun Enterprise 3000 UltraSPARC based system.
Several length lower and upper bounds were used to illustrate their performance.
For example, with L=U=5,000, mslc ran in 1.08 seconds, while mslc slow took
578.45 seconds. It is not surprising to see that the running time of mslc was
independent of U , and the running time of mavs increased slightly for larger
L, whereas mslc slow and mavs slow grew proportionally to U and L, respec-
tively. It is worth mentioning that mavs linear, which scans right-skew segments
linearly, ran even faster than mavs, which performs binary search among right-
skew segments. The main reason was that the length of the maximum average
consecutive subsequence seems usually quite close to L. Thus, mavs linear could
quickly locate the good partners by a linear scan.

Table 1. Comparative evaluation of the five methods on a random integer sequence
ranged from -50 to 50 of length 1,000,000. The time unit is second.

Maximum Sum Maximum Average
n L, U mslc mslc slow mavs mavs slow mavs linear

1,000,000 100 1.14 12.67 8.55 46.72 3.15

1,000,000 500 1.12 57.36 9.63 232.17 3.29

1,000,000 1,000 1.15 122.97 9.11 471.64 3.06

1,000,000 5,000 1.08 578.45 10.92 2331.52 3.36

1,000,000 10,000 1.12 1270.11 11.92 4822.25 3.13

We have also used the programs to analyze the homo sapiens 4q sequence
contig of size 459kb from position 114130kb to 114589kb (sequenced by YMGC
and WUGSC, GenBank accession number NT 003253). For instance, we found
that the regions with the highest C+G ratio of length at least 200, 5000, and
10000 are 390396–390604 (C+G ratio 0.866), 389382–394381 (C+G ratio 0.513),
and 153519–163520 (C+G ratio 0.475), respectively. This might suggest further
biological experiments to better understand these GC-rich regions.

Huang’s LCP program [11] is very efficient in finding in a sequence all GC-rich
regions of length at least L. These GC-rich regions can be refined by locating
their subregions with the highest C+G ratio by using our programs mavs or
mavs linear. To illustrate this approach, we studied the rabbit α-like globin
gene cluster sequence of 10621bp, which is available from GenBank by accession
number M35026 [9]. The length cutoff L considered was 50, and the minimum
ratio p was chosen at 0.7. Table 2 summarizes the empirical results. LCP found



six interesting GC- rich regions. Take the region starting from position 6355 and
ending at position 6713 for example. The length of this region is 359bp, and its
C+G ratio is 0.805. Using the program mavs, we were able to find a subregion
(of length 53bp) with the highest C+G ratio, which starts from position 6619
and ends at position 6671 with C+G ratio 0.943. Table 2 presents more examples
of such refinements.

Table 2. Refining the regions found by program LCP.

LCP mavs

Start End Length C+G Ratio Start End Length C+G Ratio

3372 3444 73 0.740 3395 3444 50 0.740
6355 6713 359 0.805 6619 6671 53 0.943
7830 7933 104 0.779 7861 7912 52 0.808
8029 8080 52 0.769 8029 8081 52 0.769
8483 8578 96 0.760 8483 8532 50 0.800
9557 10167 611 0.782 9644 9695 52 0.981

5 Concluding Remarks

In this paper, two fundamental problems concerning the search for the heaviest
segment of a sequence with length constraints are considered. The first problem
is to find a consecutive subsequence of length at most U with the maximum sum
and the second is to find a consecutive subsequence of length at least L with
the maximum average. We have presented a linear-time algorithm for the first
and an O(n log L)-time algorithm for the second. Our results also imply efficient
solutions for finding a maximum sum consecutive subsequence of length within a
certain range and length-constrained ungapped local alignment. The algorithms
have applications to several important problems in biomolecular sequence anal-
ysis.

It would be interesting to know if there is a linear-time algorithm to find
a maximum average consecutive subsequence of length at least L. It also re-
mains open to develop an efficient algorithm for locating the maximum average
consecutive subsequence of length between bounds L and U .

Acknowledgements

We thank Xiaoqiu Huang for his freely available program LCP. We also thank
Wen-Lian Hsu, Ming-Yang Kao, Ming-Tat Ko, and Hsueh-I Lu for helpful con-
versations. Y.-L. Lin was supported in part by grant NSC 89-2218-E-126-006
from the National Science Council, Taiwan. T. Jiang was supported in part by
a UCR startup grant and NSF Grants CCR-9988353 and ITR-0085910. K.-M.
Chao was supported in part by grant NSC 90-2213-E-010-003 from the National



Science Council, Taiwan, and by the Medical Research and Advancement Foun-
dation in Memory of Dr. Chi-Shuen Tsou.

References

1. N.N. Alexandrov and V.V. Solovyev. Statistical significance of ungapped align-
ments. Pacific Symposium on Biocomputing (PSB-98), pages 463–472, 1998.

2. A. Arslan and Ö Eğecioğlu. Algorithms for local alignments with constraints.
Manuscript, 2001.

3. A. Arslan, Ö Eğecioğlu, and P. Pevzner. A new approach to sequence comparison:
Normalized sequence alignment. Bioinformatics, 17:327–337, 2001.

4. V. Bafna and D.H. Huson. The conserved exon method for gene finding. Proc.
Int. Conf. Intell. Syst. Mol. Biol. (ISMB), 8:3–12, 2000.

5. S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, and E. Lander. Comparative
analysis of mouse and human DNA and applications to exon prediction. Proc. Int.
Conf. Comp. Mol. Biol. (RECOMB), 4, 2000.

6. J. Bentley. Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1986.
7. M.S. Boguski, R.C. Hardison, S. Schwartz, and W. Miller. Analysis of conserved

domains and sequence motifs in cellular regulatory proteins and locus control re-
gions using new software tools for multiple alignment and visualization. New Biol.,
4:247–260, 1992.

8. S. Hannenhalli and S. Levy. Promoter prediction in the human genome. Bioinfor-
matics, 17:S90–S96, 2001.

9. R.C. Hardison, D. Krane, C. Vandenbergh, J.-F.F. Cheng, J. Mansberger, J. Tad-
die, S. Schwartz, X. Huang, and W. Miller. Sequence and comparative analysis
of the rabbit alpha-like globin gene cluster reveals a rapid mode of evolution in a
G+C rich region of mammalian genomes. J. Mol. Biol., 222:233–249, 1991.

10. R.C. Hardison, J.L. Slighton, D.L. Gumucio, M. Goodman, N. Stojanovic, and
W. Miller. Locus control regions of mammalian beta-globin gene clusters: com-
bining phylogenetic analyses and experimental results to gain functional insights.
Gene, 205:73–94, 1997.

11. X. Huang. An algorithm for identifying regions of a DNA sequence that satisfy a
content requirement. CABIOS, 10:219–225, 1994.

12. A. Nekrutenko and W.-H. Li. Assessment of compositional heterogeneity within
and between eukaryotic genomes. Genome Research, 10:1986–1995, 2000.

13. P.S. Novichkov, M.S. Gelfand, and A.A. Mironov. Prediction of the exon-intron
structure by comparison sequences. Mol. Biol., 34:200–206, 2000.

14. P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European molecular biology
open software suite. Trends Genet., 16:276–277, 2000.

15. N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman,
W. Miller, and R. Hardison. Comparison of five method for finding conserved
sequences in multiple alignments of gene regulatory regions. Nucleic Acids Re-
search, 27:3899–3910, 1999.

16. B.Y. Wu, K.-M. Chao, and C. Y. Tang. An efficient algorithm for the length-
constrained heaviest path problem on a tree. Infomation Processing Letters, 69:63–
67, 1999.

17. Z. Zhang, P. Berman, and W. Miller. Alignments without low-scoring regions. J.
Comput. Biol., 5:197–200, 1998.

18. Z. Zhang, P. Berman, T. Wiehe, and W. Miller. Post-processing long pairwise
alignments. Bioinformatics, 15:1012–1019, 1999.


