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一、中文摘要 
 
支配點 （Dominating set）問題 與變異支配點問題
可以應用在許多領域， 例如：地圖路由問題、 計
算機通訊網路、 無線電廣播、 編碼問題與社群關
係等等。雖然在梯形圖上解決這些支配點問題與變
異支配點問題已有一些初步結果，但是這些結果
中，仍然有一些部分需要研究者做進一步的改善。
例如：梯形圖上的 clique domination 問題與 節點
加權版本的connected domination 問題等等。 

過去，在圖形演算法的研究中，曾經將 
interval graphs 與 permutation graphs 推廣到梯形
圖上，並且在許多梯形圖上的最佳化問題演算法的
研究中獲得許多重要的成果。現在，研究漸漸導引
到將梯形圖推廣到更高層次的方向。例如，Flotow 
[6] 定義了所謂的 d-梯形圖； Felsner 等人 [5] 將
梯形圖推廣到所謂的 (circle trapezoid graphs) 圓形
梯形圖。而 Kratsch [8] 則再將 d-梯形圖推廣到所
謂的(circular d-trapezoid graphs) 循環 d-梯形圖。 
雖然許多最佳化問題在梯形圖上可以找到許多有
效率的演算法 [2,5,9,13]，但是在廣義梯形圖上，
這幾年間卻只得到很少部分的解答。本計畫的目的
就是在探討如何在一些具有特殊幾何（組合）性質
的 廣義梯形圖上找到有效率的圖形演算法來解決
這些變異支配點問題與其他最佳化問題。 
 
關鍵詞：圖形演算法、支配點問題、梯形圖、d-梯
形圖、圓形梯形圖、循環 d-梯形圖、廣義梯形圖。。 
 
Abstract 
 
Dominating set problem and its variants have many 
applications in areas like bus routing, communication 
networks, radio broadcast, code-word designs, and 
social networks. Many results  concerning 
domination and its variants on trapezoid graphs have 
been pursposed it seems that some of these results still 
leave rooms for improving. Examples include the 
clique domination problem on the trapezoid graphs 
and the weighted case for connected domination 

problem. 
 Along with the direction that generalizes interval 
graphs and permutation graphs to (subclasses of) 
trapezoid graphs, researchers are now trying to 
generalize the class of trapezoid graphs. The class of 
d-trapezoid graphs is introduced by Flotow [6]; The 
circle trapezoid graphs is proposed by Felsner et al. 
[5]. Further, the class of circular d-trapezoid graphs, 
defined by Kratsch [8], are the intersection graphs of 
circular trapezoids between d parallel circles, also 
generalizing circular-arc graphs. Some of the problems 
may have been partly answered [5,8]; however, there 
may still be room for improvement. It is our purpose 
in this project to find more efficient algorithms on 
trapezoid graphs and variants of generalized trapezoid 
graphs. 
 
Keywords: Graph algorithms, dominating set, 
Trapezoid graphs, d-trapezoid graphs, circle trapezoid 
graphs, circular d-trapezoid graphs, generalized 
trapezoid graphs.. 
 
二、緣由與目的 
 
Many graph optimization problems, such as 
Hamiltonian cycle, maximum clique, maximum 
independent set, and colorability, have been proven to 
be intractable for general graphs [7]. On the other 
hand, there exist fast algorithms for solving these 
problems if the input graph has certain nice properties, 
or can be realized by a specific type of model.   

The intersection graph of a collection of 
trapezoids with corner points lying on two parallel 
lines is called the trapezoid graph [3, 4]. Note that 
trapezoid graphs are perfect and properly contain both 
interval graphs and permutation graphs. Trapezoid 
graphs are perfect since they are cocomparability 
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graphs.  
The fastest known algorithm for recognition of 

trapezoid graph is given by Ma and Spinrad in [12],  
where they show that interval dimension 2 problem 
and trapezoid graphs recognition both can be solved in 
O(n^2) time. Dagan, Golumbic, and Pinter [4] show 
that the channel routing problem is equivalent to the 
coloring problems on trapezoid graphs and present an 
O(n^2) algorithm to solve the problem. Felsner et al. 
[5] design O(n\log n) suring the `vulnerability' of these 
graphs. 

In summary, circular d-trapezoid graphs 
generalizes d-trapezoid graphs, but circular 
d-trapezoid graphs do not generalize circle trapezoid 
graphs. Note that d-trapezoid graphs are still 
cocomparability graphs, but circuar d-trapezoid graphs 
and circle trapezoid time algorithms for chromatic 
number, weighted independent set, clique cover and 
maximum weighted clique for trapezoid graphs; the 
time can be improved to O(n\log\log n) if the 
representations are sorted. It shall be noted that these 
results are also independently found by Chang [1]. 
Chen and Wang [2] show an algorithm for finding 
depth-first spanning trees on trapezoid graphs in O(n) 
time. For the dominating sets problem and its variants 
in trapezoid graphs, see [9, 10, 13]. 

Along with the direction that generalizes interval 
graphs and permutation graphs to (subclasses of) 
trapezoid graphs, researchers are now trying to 
generalize the class of trapezoid graphs. Flotow [6] 
introduces the class of m-trapezoid graphs that are the 
intersection graphs of m-trapezoids, where an 
m-trapezoid is given by m+1 intervals on m+1 parallel 
lines. Recall that the k-th power of a graph G=(V,E), 
denoted G^k, is the graph with the same vertex while 
two vertices are adjacent iff there exists a path of 
length at most k connecting them. Flotow shows that if 
G^k is an m-trapezoid graph then G^{k+1} is also an 
m-trapezoid graph. Lin [11] show that determining 
whether a given graph is a k-th power graph for any 
fixed k>1 is NP-complete. Felsner et al. [5] give 
O(n\log^{m-1} n) time algorithms for chromatic 
number, weighted independent set, clique cover and 
maximum weighted clique for m-trapezoid graphs. 
They also propose a new class of graphs called circle 
trapezoid graphs, also known as circular strips graphs, 
that properly contains trapezoid graphs, circle graphs 
and circular-arc graphs as subclasses; they propose an 
O(n^2) time algorithm for weighted independent set 

and an O(n^2\log n) time algorithm for weighted 
clique problem for circle trapezoid graphs, using their 
algorithms for trapezoid graphs as subroutines. Note 
that a circle trapezoid is the region in a circle that lies 
between two non-crossing chords, and the circle 
trapezoid graphs are the intersection graphs of circle 
trapezoids in a circle. Just like circular permutation 
graphs shall not be confused with circle graphs, circle 
trapezoid graphs shall not be confused with circular 
trapezoid graphs, defined by Kratsch [8]. Here a 
circular trapezoid is the region in two circles (parallel 
to each other, in the 3D space) that lies between two 
non-crossing segments (on the cylinder surface, 
connecting two endpoints in each circle.) It follows 
that the circular trapezoid graphs are the intersection 
graphs of circular trapezoids between two parallel 
circles. They also extends circular trapezoid graphs 
into d>2 parallel circles; the generalized classes of 
graphs is so called circular d-trapezoid graphs. Kratsch 
show that polynomial time algorithms for computing 
the component number vectors and the maximum 
component order vectors for mea graphs are not 
subclasses of cocomparability graphs. Further, it is 
still not known whether we can efficiently recognize 
circle trapezoid graphs, (d>2)-trapezoid graphs, or 
circular (d>= 2)-trapezoid graphs. It seems that 
research has been directed towards using the the 
specific topological or geometric structure of theses 
generalized trapezoid graphs to solve more intractable 
optimization problems in larger classes of graphs. 
(d>= 2)-trapezoid graphs, and not much is known 
about problems on circle trapezoid graphs. 
 A dominating set of a graph G = (V, E) is a 
subset D of V such that every vertex not in D is 
adjacent to at least one vertex in D. Each vertex v in V 
can be associated with a (non-negative) real weight, 
denoted by w(v). The weighted domination problem is 
a dominating set, D, such that its total weights w(D) is 
minimized. A dominating set D is independent, 
connected or total if the subgraph induced by D has no 
edge, is connected, or has no isolated vertex, 
respectively. Dominating set problem and its variants 
have many applications in areas like bus routing, 
communication network, radio broadcast, code-word 
design, and social network.  

The decision version of the weighted domination 
problem is NP-complete even for cocomparability 
graphs. For trapezoid graphs, Liang shows that the 
minimum weighted domination and the total 
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domination problem can be solved in O(mn) time. Lin 
[9] show that the minimum weighted independent 
domination in trapezoid graphs can be found in O(n 
log n) time. Srinivasan et al. [11] show that the 
minimum weighted connected domination problem in 
trapezoid graphs can be solved in O(m + n log n) time. 
For the unweighted case, the O(n log n) factor is 
improved by Liang [7], who show that the 
minimum-cardinality connected domination problem 
in trapezoid graphs can be solved in O(m + n) time. 
However, since the number of edges, m, can be as 
large as O(n2 ), the potential time-complexity of the 
algorithm is still O(n 2 ).  
 
四、計畫成果 
 
A minimal connected dominating set is a connected 
dominating set such that the removal of any vertex 
leaves the resulting subset being no longer a connected 
dominating set. It is easily seen that a minimum 
weighted connected dominating set is minimal since 
the assigned weights are non-negative. It can be shown 
[11] that a minimal connected dominating set of a 
trapezoid graph is consisted of three parts: S; P, and T; 
here S denotes the set of a dominating source (a left 
dominator or a source pair), T denotes the set of a 
dominating target (a right dominator or a sink pair), 
and P denotes a (lightest) chordless path from S to T. 
Note that the dominating source (target) can be a 
singleton or a pair of vertices. 

Following the previous discussion, a 
simple-minded algorithm can be constructed as 
following: for each left dominator u and source pair 
find those lightest paths from the dominating sources 
until reaching the dominating targets. Within these 
potentially O(n2 ) lightest paths, the one with the 
minimum weight is the desired minimum connected 
dominating set. The trick to obtain an efficient 
algorithm is using the standard dynamic programming 
technique to search for the lightest paths collectively 
so that most of the non-optimal solutions can be 
overlooked. The idea here is that, after the source 
vertices of the trapezoid graphs being properly 
initialized, the aggregated weight of an undecided 
vertex can be calculated by other (already determined) 
trapezoids touching it from the left. 

In our paper, COCOON'2OOO, (with F.R. Hsu 
and and Yin-Te Tsai), LNCS 1858, pp 126--136. 
Bondi Beach, Sydney, Australia, July 26-28, 2000, 
titled ``Efficient Algorithms for the Minimum 
Connected Domination on Trapezoid Graphs'', we 
show that In this paper, we show that finding the 
minimum cardinality connected dominating set in 
trapezoid graphs using O(n) time. For finding the 
minimum weighted connected dominating set, we 

show the problem can be efficiently solved in O(n 
loglog n) time.  

The idea of the algorithms is by observing the 
minimum dominating set is decided by one of the 
target vertices, v, such that the corresponded 
aggregated weight w(v) represents the minimum 
weight of all connected dominating set. Clearly our 
algorithm works correctly if the rightmost dominating 
vertices of the minimum connected dominating set are 
actually the non-dominator sink pairs or contain one of 
the right dominator. It is thus not hard to verify that 
the calculation strategy obtains the correct answer 
when the size of the minimum dominating set is equal 
to one or greater than two.  

The most complicated case of the algorithm is 
when the size of the connected dominating set is two. 
Let two adjacent vertices (u, v) form a dominating pair 
of the trapezoid graph. Depending on how these two 
trapezoids intersecting each other, we have three kinds 
of dominating pairs. The first case of a dominating 
pair is when one of the vertices is a left dominator and 
the other vertex is a right dominator. It is easily seen 
that the general scheme of the algorithm deals with the 
situation correctly. However, the general strategy does 
not necessarily compute the minimum dominating pair 
for the following two cases.  We showed examples 
for such situation in the paper. The second case of a 
dominating pair is when one of the vertices is a 
dominator, but the other vertex is not a dominator. 
Here we show how to find the minimum weighted 
connected dominating pair of such kind. 

Intuitively, it seems that the optimum solution 
will be harder to find when the size of the connected 
dominating is large. Surprisingly, we find that the most 
complicated case for both of algorithms is when the 
size of the connected dominating set equals to two. 
Especially for the weighted case, the algorithm will 
have to arrange several delicate settings to find the 
minimum weighted dominating pair, an unanticipated 
and interesting result before the authors investigated 
on the problem. 
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