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Abstract

Dominating set problem and its variants have many
applications in aress like bus routing, communication
networks, radio broadcast, code-word designs, and
sociad  networks. Many  results concerning
domination and its variants on trapezoid graphs have
been pursposed it seems that some of these resullts still
leave rooms for improving. Examples include the
clique domination problem on the trapezoid graphs
and the weighted case for connected domination

problem.

Along with the direction that generalizes interval
graphs and permutation graphs to (subclasses of)
trapezoid graphs, researchers are now trying to
generalize the class of trapezoid graphs. The class of
d-trapezoid graphs is introduced by Flotow [6]; The
circle trapezoid graphs is proposed by Felsner et al.
[5]. Further, the class of circular d-trapezoid graphs,
defined by Kratsch [8], are the intersection graphs of
circular trapezoids between d parallel circles, also
generalizing circular-arc graphs. Some of the problems
may have been partly answered [5,8]; however, there
may still be room for improvement. It is our purpose
in this project to find more efficient algorithms on
trapezoid graphs and variants of generalized trapezoid

graphs.
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Many graph optimization problems, such as
Hamiltonian cycle, maximum clique, maximum
independent set, and colorability, have been proven to
be intractable for general graphs [7]. On the other
hand, there exist fast agorithms for solving these
problems if the input graph has certain nice properties,
or can be realized by a specific type of model.

The intersection graph of a collection of
trapezoids with corner points lying on two parallel
lines is called the trapezoid graph [3, 4]. Note that
trapezoid graphs are perfect and properly contain both
interval graphs and permutation graphs. Trapezoid
graphs are perfect since they are cocomparability



graphs.

The fastest known algorithm for recognition of
trapezoid graph is given by Ma and Spinrad in [12],
where they show that interval dimension 2 problem
and trapezoid graphs recognition both can be solved in
O(n"2) time. Dagan, Golumbic, and Pinter [4] show
that the channel routing problem is equivalent to the
coloring problems on trapezoid graphs and present an
O(n"2) agorithm to solve the problem. Felsner et a.
[5] design O(nMlog n) suring the “vulnerability' of these
graphs.

In summary, circular d-trapezoid graphs
generdlizes d-trapezoid graphs, but circular
d-trapezoid graphs do not generalize circle trapezoid
graphs. Note that d-trapezoid graphs are still
cocomparability graphs, but circuar d-trapezoid graphs
and circle trapezoid time agorithms for chromatic
number, weighted independent set, clique cover and
maximum weighted clique for trapezoid graphs; the
time can be improved to O(n\logllog n) if the
representations are sorted. It shall be noted that these
results are also independently found by Chang [1].
Chen and Wang [2] show an agorithm for finding
depth-first spanning trees on trapezoid graphs in O(n)
time. For the dominating sets problem and its variants
in trapezoid graphs, see[9, 10, 13].

Along with the direction that generalizesinterval
graphs and permutation graphs to (subclasses of)
trapezoid graphs, researchers are now trying to
generalize the class of trapezoid graphs. Flotow [6]
introduces the class of m-trapezoid graphs that are the
intersection graphs of m-trapezoids, where an
m-trapezoid is given by m+1 intervals on m+1 parallel
lines. Recall that the k-th power of a graph G=(V,E),
denoted Gk, is the graph with the same vertex while
two vertices are adjacent iff there exists a path of
length at most k connecting them. Flotow shows that if
Gk is an m-trapezoid graph then G k+1} is also an
m-trapezoid graph. Lin [11] show that determining
whether a given graph is a k-th power graph for any
fixed k>1 is NP-complete. Felsner et a. [5] give
O(Mlog{m-1} n) time algorithms for chromatic
number, weighted independent set, clique cover and
maximum weighted clique for m-trapezoid graphs.
They also propose a new class of graphs called circle
trapezoid graphs, also known as circular strips graphs,
that properly contains trapezoid graphs, circle graphs
and circular-arc graphs as subclasses; they propose an
O(n"2) time agorithm for weighted independent set

and an O(n"2\log n) time agorithm for weighted
clique problem for circle trapezoid graphs, using their
algorithms for trapezoid graphs as subroutines. Note
that a circle trapezoid is the region in a circle that lies
between two non-crossing chords, and the circle
trapezoid graphs are the intersection graphs of circle
trapezoids in a circle. Just like circular permutation
graphs shall not be confused with circle graphs, circle
trapezoid graphs shall not be confused with circular
trapezoid graphs, defined by Kratsch [8]. Here a
circular trapezoid is the region in two circles (parallel
to each other, in the 3D space) that lies between two
non-crossing segments (on the cylinder surface,
connecting two endpoints in each circle.) It follows
that the circular trapezoid graphs are the intersection
graphs of circular trapezoids between two parallel
circles. They aso extends circular trapezoid graphs
into d>2 parallel circles; the generalized classes of
graphsis so called circular d-trapezoid graphs. Kratsch
show that polynomial time agorithms for computing
the component number vectors and the maximum
component order vectors for mea graphs are not
subclasses of cocomparability graphs. Further, it is
gtill not known whether we can efficiently recognize
circle trapezoid graphs, (d>2)-trapezoid graphs, or
circular (d>= 2)-trapezoid graphs. It seems that
research has been directed towards using the the
specific topological or geometric structure of theses
generalized trapezoid graphs to solve more intractable
optimization problems in larger classes of graphs.
(d>= 2)-trapezoid graphs, and not much is known
about problems on circle trapezoid graphs.

A dominating set of a graph G = (V, E) is a
subset D of V such that every vertex not in D is
adjacent to at least one vertex in D. Each vertex vin V
can be associated with a (non-negative) real weight,
denoted by w(v). The weighted domination problem is
adominating set, D, such that its total weights w(D) is
minimized. A dominating set D is independent,
connected or total if the subgraph induced by D has no
edge, is connected, or has no isolated vertex,
respectively. Dominating set problem and its variants
have many applications in areas like bus routing,
communication network, radio broadcast, code-word
design, and social network.

The decision version of the weighted domination
problem is NP-complete even for cocomparability
graphs. For trapezoid graphs, Liang shows that the
minimum weighted domination and the tota



domination problem can be solved in O(mn) time. Lin
[9] show that the minimum weighted independent
domination in trapezoid graphs can be found in O(n
log n) time. Srinivasan et a. [11] show that the
minimum weighted connected domination problem in
trapezoid graphs can be solved in O(m + nlog n) time.
For the unweighted case, the O(n log n) factor is
improved by Liang [7], who show that the
minimum-cardinality connected domination problem
in trapezoid graphs can be solved in O(m + n) time.
However, since the number of edges, m, can be as
large as O(n* ), the potential time-complexity of the
algorithmisstill O(n 2).

A minimal connected dominating set is a connected
dominating set such that the removal of any vertex
|eaves the resulting subset being no longer a connected
dominating set. It is easily seen that a minimum
weighted connected dominating set is minimal since
the assigned weights are non-negative. It can be shown
[11] that a minimal connected dominating set of a
trapezoid graph is consisted of three parts: S; P, and T;
here S denotes the set of a dominating source (a left
dominator or a source pair), T denotes the set of a
dominating target (a right dominator or a sink pair),
and P denotes a (lightest) chordless path from Sto T.
Note that the dominating source (target) can be a
singleton or a pair of vertices.

Following the previous discussion, a
simple-minded algorithm can be constructed as
following: for each left dominator u and source pair
find those lightest paths from the dominating sources
until reaching the dominating targets. Within these
potentially O(n? ) lightest paths, the one with the
minimum weight is the desired minimum connected
dominating set. The trick to obtain an efficient
algorithm is using the standard dynamic programming
technique to search for the lightest paths collectively
so that most of the non-optimal solutions can be
overlooked. The idea here is that, after the source
vertices of the trapezoid graphs being properly
initialized, the aggregated weight of an undecided
vertex can be calculated by other (already determined)
trapezoids touching it from the left.

In our paper, COCOON'2000, (with F.R. Hsu
and and Yin-Te Tsai), LNCS 1858, pp 126--136.
Bondi Beach, Sydney, Austraia, July 26-28, 2000,
titted TEfficient Algorithms for the Minimum
Connected Domination on Trapezoid Graphs', we
show that In this paper, we show that finding the
minimum cardinality connected dominating set in
trapezoid graphs using O(n) time. For finding the
minimum weighted connected dominating set, we

show the problem can be efficiently solved in O(n
loglog n) time.

The idea of the algorithms is by observing the
minimum dominating set is decided by one of the
target vertices, v, such that the corresponded
agoregated weight w(v) represents the minimum
weight of all connected dominating set. Clearly our
algorithm works correctly if the rightmost dominating
vertices of the minimum connected dominating set are
actually the non-dominator sink pairs or contain one of
the right dominator. It is thus not hard to verify that
the calculation strategy obtains the correct answer
when the size of the minimum dominating set is equal
to one or greater than two.

The most complicated case of the agorithm is
when the size of the connected dominating set is two.
L et two adjacent vertices (u, v) form adominating pair
of the trapezoid graph. Depending on how these two
trapezoids intersecting each other, we have three kinds
of dominating pairs. The first case of a dominating
pair is when one of the vertices is aleft dominator and
the other vertex is a right dominator. It is easily seen
that the general scheme of the algorithm deals with the
situation correctly. However, the general strategy does
not necessarily compute the minimum dominating pair
for the following two cases. We showed examples
for such situation in the paper. The second case of a
dominating pair is when one of the vertices is a
dominator, but the other vertex is not a dominator.
Here we show how to find the minimum weighted
connected dominating pair of such kind.

Intuitively, it seems that the optimum solution
will be harder to find when the size of the connected
dominating is large. Surprisingly, we find that the most
complicated case for both of agorithms is when the
size of the connected dominating set equals to two.
Especially for the weighted case, the algorithm will
have to arrange severa delicate settings to find the
minimum weighted dominating pair, an unanticipated
and interesting result before the authors investigated
on the problem.
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