
Parallel Computing
平行計算

Tien-Hsiung Weng
翁添雄

大葉大學資工系
thweng@pu.edu.tw

Lecture 1

Contact Information

• Instructor: Tien-Hsiung Weng 翁添雄

• Email: thweng@pu.edu.tw
• Office:靜宜大學管理學院二研507
• Phone: (04) 26318001~18107
• Office hours: by appointment

mailto:thweng@pu.edu.tw

Course Objectives
• Learn fundamentals of parallel computing

– Principles of parallel algorithm design
– Parallel computer architectures
– Programming models and methods

• Develop skill writing parallel programs
– Programming assignments

• Develop skill analyzing parallel computing
problems
– Homework problems
– Paper presentation

Topics
• Introduction
• Parallel computer architectures

– Interconnection networks
– Shared-memory systems and distributed-memory

systems
• Principles of parallel algorithm design
• Programming tightly-coupled shared-memory

systems: OpenMP and Cilk
• Programming distributed-memory systems

– Message passing: MPI

Prerequisites

• Programming in C or Fortran
• Data structures
• Foundation of computer architecture

Essential Reading
• Text book:

– Introduction to Parallel Computing, Ananth Grama, Anshul
Gupta, George Karypis, Vipin Kumar, Addison-Wesley, 2003.

• Additional reading:
– Parallel Programming in C with MPI and OpenMP, Michael J.

Quinn, McGraw Hill,2004
– Patterns for Parallel Programming, Timothy G. Mattson, Beverly

A. Sanders, Berna L. Massingill, Addison-Wesley,2004
– Parallel Programming with MPI, Peter S. Pacheco, Morgan

Kaufmann Publishers, 1997
– OpenMP Specification, www.openmp.org

Grading

– Midterm 20%
– Assignments 30%
– Papers presentation 50%

Why do we need Parallel
Computing?

• The need for more computing power
• The limitation of serial computer
• The current trend in multi-core computer

Why do we need powerful
computers?

• The need for more computational power (the need for
speed)
– Data mining
– Earthquake simulation
– Global climate modeling
– Semiconductor design
– Nuclear weapons test by simulation
– Cryptography
– Financial and economic modeling
– Transaction processing, web services and search engines
– Computation fluid dynamics (airplane design)
– Crash simulation
– Ocean simulation
– Computational Chemistry
– Computational Material Sciences and Nanosciences

Why do we need for more
computational power?

• Suppose our computer performs one billion (109) calculations/second
• We want to predict the weather over US and Canada for the next 2 days:

– Area of US and Canada is 20 million km2

– model the atmosphere from sea level to an altitude of 20 km
– make prediction of the weather at each vertex of the grid (cubical grid), with each

cube measuring 0.1 km on each side.
– To predict weather one hour from now, each grid point takes about 100

calculations.

• So, we need total grid points:
– 2.0 * 107 km2 * 20 km * 103 cubes/km3 = 4*1011 grid points
– in order to predict weather one hour from now, we need 4*1013 cals
– To predict the weather at each hour for 2 days: 4*1013 cals/hour * 48 hours = 2 *

1015 cals
– Using this computer it will take about 2 * 1015 calculations / 109 cals/secs = 2 *

106 secs (23 days)

The limitation of a serial
computer

• Can a serial computer execute the following
code in one second?

• On a conventional computer, we successively
fetch x[i] and u[i], store the result in z[i]. So, in
order to execute this code in one second, it
needs to carry out at least 2*1012 copies
between memory and register / second

• If data travels from memory to CPU at the speed
at light (3*108 meters/sec)

for (i=0; I < ONE_TRILLION; i++)
z[i] = x[i] + u[i]

The limitation of a serial
computer

• Let r be the average distance of a word of memory from the CPU, then r must satisfy

• 3*1012 * r meters = 3*108 meters/sec * 1 sec
• r = 10-4 meters
• We need memory hardware layout in a regular rectangular grid.
• If we use a square grid with side length s and connect the CPU to the center of the

square, then the average distance from a memory location to the CPU is about s/2.
so we want s/2=r=10-4 meters, or s=2*10-4 meters.

• If our memory words form a square grid, a typical row of memory words will contain

• Thus, to fit a single word of memory into a square with side length measuring

• This is the size of a relatively small atom.
• We need a parallel computer

words10*310*3 612 =

metersmeters 10
6

4

10
10*3

10*2 −
−

≈

Unit of measure in HPC
• High Performance Computing (HPC) units are:

– Flops: floating point operations
– Flop/s: floating point operations per second
– Bytes: size of data (double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 106 byte

(also 220 = 1048576)
Giga Gflop/s = 109 flop/sec Gbyte = 109 byte

(also 230 = 1073741824)
Tera Tflop/s = 1012 flop/sec Tbyte = 1012 byte

(also 240 = 10995211627776)
Peta Pflop/s = 1015 flop/sec Pbyte = 1015 byte

(also 250 = 1125899906842624)
Exa Eflop/s = 1018 flop/sec Ebyte = 1018 byte

Impediments to Parallel
Computing

• Software development is harder
– Lack of standardized and effective development tools,

programming models and environment

• Algorithm development is harder
– Complexity of coordinating concurrent activities

• Rapid change in computer system architecture
– Today’s parallel algorithm may not be suitable for

tomorrow’s parallel computer

Impediments to Parallel
Computing

• The complexity of how the processors will work together
• Having a collection of processors and memory, we must

– Decide on and implement an interconnection network for the
processors and memory modules

– Design and implement system software for the hardware
– Devise algorithms and data structures for solving our problem
– Divide the algorithms and data structures up into subproblems
– Identify the communications that will be needed among the

subproblems
– Assign subproblems to processors and memory modules

Issues in Parallel Performance:
Locality and Parallelism

• Large memories are slow, fast memories are small
• Storage hierarchies are large and fast on average
• Parallel processors, collectively, have large, fast cache

– the slow accesses to “remote” data we call “communication”
• Algorithm should do most work on local data

CPU
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

Finding Enough Parallelism:
Amdahl’s Law

• Suppose only part of an application seems parallel
• Amdahl’s law

– Let s be the fraction of work done sequentially,
so (1-s) is the fraction parallelizable

– Let P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)

<= 1/s

• Even if the parallel part speeds up perfectly, the
sequential part limits overall performance.

Load Imbalance
• Load imbalance is the time that some

processors in the system are idle due to
– insufficient parallelism (during that phase)
– unequal size tasks

• Examples of the latter
– adapting to “interesting parts of a domain”
– tree-structured computations
– fundamentally unstructured problems

• Algorithm needs to balance load

Today HPC Systems
Rank Site Manufactu Computer Country Year Processors Rmax Processor Interconnect

1
DOE/NNSA/LLN

L
IBM eServer Blue Gene Solution United States 2005 131072 280600 PowerPC 440 Proprietary

2
IBM Thomas

Watson
IBM eServer Blue Gene Solution United States 2005 40960 91290 PowerPC 440 Proprietary

3
DOE/NNSA/LLN

L
IBM

eServer pSeries p5 575 1.9

GHz
United States 2006 12208 75760 POWER5 Federation

4 NASA Ames SGI
SGI Altix 1.5 GHz, Voltaire

Infiniband
United States 2004 10160 51870

Intel IA-64

Itanium 2
Numalink/Infiniband

5 CEA Bull SA
NovaScale 5160, Itanium2 1.6

GHz, Quadrics
France 2006 8704 42900

Intel IA-64

Itanium 2
Quadrics

6
Sandia National

Laboratories
Dell

PowerEdge 1850, 3.6 GHz,

Infiniband
United States 2006 9024 38270

Intel EM64T

Xeon EM64T
Infiniband

7

GSIC Center,

Tokyo Institute of

Tech

NEC/Sun

Sun Fire X4600 Cluster,

Opteron 2.4/2.6 GHz,

Infiniband

Japan 2006 10368 38180

AMD x86_64

Opteron Dual

Core

Infiniband

8 FZJ IBM eServer Blue Gene Solution Germany 2006 16384 37330 PowerPC 440 Proprietary

9
Sandia National

Laboratories
Cray Inc. Red Storm Cray XT3, 2.0 GHz United States 2005 10880 36190

AMD x86_64

Opteron

XT3 Internal

Interconnect

10
The Earth

Simulator Center
NEC Earth-Simulator Japan 2002 5120 35860 NEC Multi-stage crossbar

Figure from top 500 list: http://www.top500.org June 2006

Rmax
TF/s

http://www.top500.org/

Advance of Technology:
“Moore’s Law”

http://www.intel.com/technology/silicon/mooreslaw/pix/mooreslaw_chart.gif

Gordon Moore, Founder of Intel

1965: since the IC was
invented, the number of
transistors/inch2 in these
circuits roughtly doubled every
year. This trend would
continue for the foreseeable
future

1975: revised – circuit
complexity doubles every 18
months

Parallelism

• Definition: capable to execute parts of a
program concurrently

• Goal: Shorter execution time
• Grain of parallelism: how bi are the parts?

– Bit, instruction, statement, procedure, jobs
• Our focus: coarse-grain parallelism

Hierarchical Parallelism in
Systems

• Multi-processor nodes
• SMP (Symmetric shared-memory) systems
• All processors share a bus to memory
• Direct-connect systems, i.e. Opteron
• Part of memory directly-connected to each processor
• Hardware accelerators
• Field programmable gate arrays
• Clusters
• Multiprocessor nodes
• Interconnection network
• Crossbar switch: all to all
• Mesh: nearest neighbor
• Multi-stage interconncetion networks

	Parallel Computing�平行計算
	Contact Information
	Course Objectives
	Topics
	Prerequisites
	Essential Reading
	Grading
	Why do we need Parallel Computing?
	Why do we need powerful computers?
	 Why do we need for more computational power?
	 The limitation of a serial computer
	 The limitation of a serial computer
	Unit of measure in HPC
	Impediments to Parallel Computing
	Impediments to Parallel Computing
	Issues in Parallel Performance: Locality and Parallelism
	Finding Enough Parallelism: Amdahl’s Law
	Load Imbalance
	Today HPC Systems
	Advance of Technology: “Moore’s Law”
	Parallelism
	Hierarchical Parallelism in Systems

