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Contact Information

• Instructor:  Tien-Hsiung Weng 翁添雄

• Email:  thweng@pu.edu.tw
• Office:靜宜大學管理學院二研507
• Phone: (04) 26318001~18107
• Office hours: by appointment

mailto:thweng@pu.edu.tw


Course Objectives
• Learn fundamentals of parallel computing

– Principles of parallel algorithm design
– Parallel computer architectures
– Programming models and methods

• Develop skill writing parallel programs
– Programming assignments

• Develop skill analyzing parallel computing 
problems
– Homework problems
– Paper presentation



Topics
• Introduction
• Parallel computer architectures

– Interconnection networks
– Shared-memory systems and distributed-memory 

systems
• Principles of parallel algorithm design
• Programming tightly-coupled shared-memory 

systems: OpenMP and Cilk
• Programming distributed-memory systems

– Message passing: MPI



Prerequisites

• Programming in C or Fortran
• Data structures
• Foundation of computer architecture



Essential Reading
• Text book:

– Introduction to Parallel Computing,  Ananth Grama, Anshul
Gupta, George Karypis, Vipin Kumar, Addison-Wesley, 2003.

• Additional reading:
– Parallel Programming in C with MPI and OpenMP, Michael J. 

Quinn, McGraw Hill,2004
– Patterns for Parallel Programming, Timothy G. Mattson, Beverly 

A. Sanders, Berna L. Massingill, Addison-Wesley,2004
– Parallel Programming with MPI, Peter S. Pacheco, Morgan 

Kaufmann Publishers, 1997
– OpenMP Specification, www.openmp.org



Grading

– Midterm                    20%
– Assignments            30%
– Papers presentation 50%



Why do we need Parallel 
Computing?

• The need for more computing power
• The limitation of serial computer
• The current trend in multi-core computer



Why do we need powerful 
computers?

• The need for more computational power (the need for 
speed)
– Data mining
– Earthquake simulation
– Global climate modeling
– Semiconductor design
– Nuclear weapons test by simulation
– Cryptography
– Financial and economic modeling
– Transaction processing, web services and search engines
– Computation fluid dynamics (airplane design)
– Crash simulation
– Ocean simulation
– Computational Chemistry
– Computational Material Sciences and Nanosciences



Why do we need for more 
computational power?

• Suppose our computer performs one billion (109) calculations/second
• We want to predict the weather over US and Canada for the next 2 days:

– Area of US and Canada is 20 million km2

– model the atmosphere from sea level to an altitude of 20 km
– make prediction of the weather at each vertex of the grid (cubical grid), with each 

cube measuring 0.1 km on each side.
– To predict weather one hour from now, each grid point takes about 100 

calculations.

• So, we need total grid points:
– 2.0 * 107 km2 * 20 km * 103 cubes/km3 =  4*1011 grid points
– in order to predict weather one hour from now, we need 4*1013 cals
– To predict the weather at each hour for 2 days: 4*1013 cals/hour * 48 hours = 2 * 

1015 cals
– Using this computer it will take about 2 * 1015 calculations / 109 cals/secs = 2 * 

106 secs (23 days)



The limitation of a serial 
computer

• Can a  serial computer execute the following 
code in one second?

• On a conventional computer, we successively 
fetch x[i] and u[i], store the result in z[i].  So, in 
order to execute this code in one second, it 
needs to carry out at least 2*1012 copies 
between memory and register / second

• If data travels from memory to CPU at the speed 
at light (3*108 meters/sec)

for (i=0; I < ONE_TRILLION; i++)
z[i] = x[i] + u[i]



The limitation of a serial 
computer

• Let r be the average distance of a word of memory from the CPU, then r must satisfy

• 3*1012 * r meters = 3*108 meters/sec * 1 sec
• r = 10-4 meters
• We need memory hardware layout in a regular rectangular grid.
• If we use a square grid with side length s and connect the CPU to the center of the 

square, then the average distance from a memory location to the CPU is about s/2.  
so we want s/2=r=10-4 meters, or s=2*10-4 meters.

• If our memory words form a square grid, a typical row of memory words will contain

• Thus, to fit a single word of memory into a square with side length measuring  

• This is the size of a relatively small atom.
• We need a parallel computer
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Unit of measure in HPC
• High Performance Computing (HPC) units are:

– Flops: floating point operations
– Flop/s: floating point operations per second
– Bytes: size of data (double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 106 byte

(also 220 = 1048576)
Giga Gflop/s = 109 flop/sec Gbyte = 109 byte 

(also 230 = 1073741824)
Tera Tflop/s = 1012 flop/sec Tbyte = 1012 byte 

(also 240 = 10995211627776)
Peta Pflop/s = 1015 flop/sec Pbyte = 1015 byte 

(also 250 = 1125899906842624)
Exa Eflop/s = 1018 flop/sec Ebyte = 1018 byte 



Impediments to Parallel 
Computing

• Software development is harder
– Lack of standardized and effective development tools, 

programming models and environment

• Algorithm development is harder
– Complexity of coordinating concurrent activities

• Rapid change in computer system architecture
– Today’s parallel algorithm may not be suitable for 

tomorrow’s parallel computer



Impediments to Parallel 
Computing

• The complexity of how the processors will work together
• Having a collection of processors and memory, we must

– Decide on and implement an interconnection network for the 
processors and memory modules

– Design and implement system software for the hardware
– Devise algorithms and data structures for solving our problem
– Divide the algorithms and data structures up into subproblems
– Identify the communications that will be needed among the 

subproblems
– Assign subproblems to processors and memory modules



Issues in Parallel Performance: 
Locality and Parallelism

• Large memories are slow, fast memories are small
• Storage hierarchies are large and fast on average
• Parallel processors, collectively, have large, fast cache

– the slow accesses to “remote” data we call “communication”
• Algorithm should do most work on local data
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Finding Enough Parallelism:  
Amdahl’s Law

• Suppose only part of an application seems parallel
• Amdahl’s law

– Let s be the fraction of work done sequentially, 
so (1-s) is the fraction parallelizable

– Let P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P) 

<= 1/s

• Even if the parallel part speeds up perfectly, the 
sequential part limits overall performance.



Load Imbalance
• Load imbalance is the time that some 

processors in the system are idle due to
– insufficient parallelism (during that phase)
– unequal size tasks

• Examples of the latter
– adapting to “interesting parts of a domain”
– tree-structured computations 
– fundamentally unstructured problems 

• Algorithm needs to balance load



Today HPC Systems
Rank Site Manufactu Computer Country Year Processors Rmax Processor Interconnect

1
DOE/NNSA/LLN

L
IBM eServer Blue Gene Solution United States 2005 131072 280600 PowerPC 440 Proprietary

2
IBM Thomas

Watson
IBM eServer Blue Gene Solution United States 2005 40960 91290 PowerPC 440 Proprietary

3
DOE/NNSA/LLN

L
IBM

eServer pSeries p5 575 1.9

GHz
United States 2006 12208 75760 POWER5 Federation

4 NASA Ames SGI
SGI Altix 1.5 GHz, Voltaire

Infiniband
United States 2004 10160 51870

Intel IA-64

Itanium 2
Numalink/Infiniband

5  CEA Bull SA
NovaScale 5160, Itanium2 1.6

GHz, Quadrics
France 2006 8704 42900

Intel IA-64

Itanium 2
Quadrics

6
Sandia National

Laboratories
Dell

PowerEdge 1850, 3.6 GHz,

Infiniband
United States 2006 9024 38270

Intel EM64T

Xeon EM64T
Infiniband

7

GSIC Center,

Tokyo Institute of

Tech

NEC/Sun

Sun Fire X4600 Cluster,

Opteron 2.4/2.6 GHz,

Infiniband

Japan 2006 10368 38180

AMD x86_64

Opteron Dual

Core

Infiniband

8 FZJ IBM eServer Blue Gene Solution Germany 2006 16384 37330 PowerPC 440 Proprietary

9
Sandia National

Laboratories
Cray Inc. Red Storm Cray XT3, 2.0 GHz United States 2005 10880 36190

AMD x86_64

Opteron

XT3 Internal

Interconnect

10
The Earth

Simulator Center
NEC Earth-Simulator Japan 2002 5120 35860 NEC Multi-stage crossbar

Figure from top 500 list: http://www.top500.org June 2006

Rmax
TF/s

http://www.top500.org/


Advance of Technology: 
“Moore’s Law”

http://www.intel.com/technology/silicon/mooreslaw/pix/mooreslaw_chart.gif

Gordon Moore, Founder of Intel

1965: since the IC was 
invented, the number of 
transistors/inch2 in these 
circuits roughtly doubled every 
year.  This trend would 
continue for the foreseeable 
future

1975: revised – circuit 
complexity doubles every 18 
months



Parallelism

• Definition:  capable to execute parts of a 
program concurrently

• Goal: Shorter execution time
• Grain of parallelism: how bi are the parts?

– Bit, instruction, statement, procedure, jobs
• Our focus: coarse-grain parallelism



Hierarchical Parallelism in 
Systems

• Multi-processor nodes
• SMP (Symmetric  shared-memory) systems
• All processors share a bus to memory
• Direct-connect systems, i.e. Opteron
• Part of memory directly-connected to each processor
• Hardware accelerators
• Field programmable gate arrays
• Clusters
• Multiprocessor nodes
• Interconnection network
• Crossbar switch: all to all
• Mesh: nearest neighbor
• Multi-stage interconncetion networks
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