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Topics
• Introduction to OpenMP
• OpenMP directives

– specifying concurrency
• parallel regions
• loops, task parallelism

• Synchronization directives
– reductions, barrier, critical, ordered

• Data handling clauses
– shared, private, firstprivate, lastprivate

• Library primitives
• Environment variables
• Example of SPMD style OpenMP program



Introduction to OpenMP
• Open specifications for Multi Processing
• An API for explicit multi-threaded, shared memory parallelism
• Three components

– compiler directives
– runtime library routines
– environment variables

• Higher-level programming model than Pthreads
– support for concurrency, synchronization, and data handling
– not mutexes, condition variables, data scope, and initialization

• Portable
– API is specified for C/C++ and Fortran
– implementations on many platforms (most Unix, Windows NT)

• Standardized



Introduction to OpenMP
• Parallelism is explicit 

– It is not an automatic programming programming model
– programmer full control (and responsibility) over 

parallelization
• No data locality control 

– No guaranteed to make the most efficient use of shared 
memory

• Not necessarily implemented identically by all 
vendors

• designed for shared address spaced machines 
– Not for distributed memory parallel systems (by itself)



Introduction to OpenMP

• Advantages
– Ease of use
– Enables incremental parallelization of a 

serial program
– Supports both coarse-grain and fine-grain 

parallelism
– Portable
– Standard



OpenMP: Fork-Join Parallelism
• OpenMP program begins execution as a single 

master thread
• Master thread executes sequentially until 1st parallel 

region
• When a parallel region is encountered, master thread

– creates a group of threads
– becomes the master of this group of threads
– is assigned the thread id 0 within the group



OpenMP Directive Format
C and C++ use compiler directives

– prefix: #pragma …
• Fortran uses significant comments

– prefixes: !$OMP, C$OMP, *$OMP
• A directive consists of a directive name 

followed by clauses
• C: 

– #pragma omp parallel default(shared) private(i,j)
• Fortran: 

– !$OMP PARALLEL DEFAULT(SHARED) 
PRIVATE(i,j)



OpenMP parallel Region 
Directives

#pragma omp parallel [clause list]

Possible clauses in [clause list]
• Conditional parallelization

– if (scalar expression)
• determines whether the parallel construct creates threads

• Degree of concurrency
– num_threads(integer expression)

• Specifies the number of threads to create
• Data Handling

– private (variable list)
• specifies variables local to each thread

– firstprivate (variable list)
• similar to the private
• private variables are initialized to variable value before the parallel directive

– shared (variable list)
• specifies that variables are shared across all the threads



Interpreting an OpenMP Parallel 
Directive

#pragma omp parallel if (is_parallel==1) num_threads(8) \
private (a) shared (b) firstprivate(c) default(none)

{
/* structured block */

}

Meaning
• if (is_parallel== 1) num_threads(8)

– If the value of the variable is_parallel is one, create 8 threads
• private (a) shared (b)

– each thread gets private copies of variables a and c
– each thread shares a single copy of variable b

• firstprivate(c)
– each private copy of c is initialized with the value of c in main thread when the parallel 

directive is encountered
• default(none)

– default state of a variable is specified as none (rather than shared)
– signals error if not all variables are specified as shared or private



OpenMP Programming Model
OpenMP

Pthread

• A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP
compiler.



Reduction Clause in OpenMP
• The reduction clause specifies how multiple local copies 

of a variable at different threads are combined into a 
single copy at the master when threads exit. 

• The usage of the reduction clause is reduction (operator: 
variable list).

• The variables in the list are implicitly specified as being 
private to threads. 

• The operator can be one of +, *, -, &, |, ^, &&, and ||.
#pragma omp parallel reduction(+: sum) num_threads(8) { 
/* compute local sums here */ 
} 
/*sum here contains sum of all local instances of sums */ 



OpenMP Programming: Example
/* ******************************************************
An OpenMP version of a threaded program to compute PI.
****************************************************** */
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)
{

num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}

}



Worksharing DO/for Directive

• for directive partitions parallel iterations 
across threads

• DO is the analogous directive for Fortran
• Usage:

#pragma omp for [clause list]
/* for loop */

• Possible clauses in [clause list]
– private, firstprivate, lastprivate
– reduction
– schedule, nowait, and ordered

• Implicit barrier at end of for loop



Using Worksharing for Directive

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)
{

sum = 0;
#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

worksharing for divides work

Implicit barrier at end of loop



Example: Matrix Multiply 

#pragma omp parallel for
for(i=0; i<n; i++)

for(j=0; j<n; j++) {
c[i][j] =0.0;
for (k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][i];
}

a,b,c are shared
i,j,k are private



Private Variables

#pragma omp parallel for private(list)

• Compiler sets up a private copy of each 
variable in the list for each thread

• Our examples use OpenMP for and DO
• But these apply to other region and 

worksharing directives
• For compiler: thread has its own stack



Example: Private Variables

for (i=0; i<n; i++) {
tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}

Swaps the values of a and b
Loop-carried dependence on tmp
Easily fixed by privatizing tmp



Example: Private Variables

#pragma omp parallel for private(tmp)
for (i=0; i<n; i++) {

tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}

Removes dependence on tmp
Would be more difficult to do in Pthreads



Example: Private Variables

for (i=0; i<n; i++) {
tmp[i] = a[i];
a[i] = b[i];
b[i] = tmp[i];

}

Requires sequential program change
Wasteful in space, O(n) vs O(p)



Example: Private Variables

F()
{   int tmp;   /* local allocation on stack */

for (i=0; i<n; i++) {
tmp[i] = a[i];
a[i] = b[i];
b[i] = tmp[i];  

}
}

So, tmp is local to each thread



Firstprivate and Lastprivate

The initial and final values of private variables 
are unspecified

A firstprivate variable is private, and the private 
copies are initialized using its value before the 
loop

A lastprivate variable is private, and the thread 
executing the {sequentially last 
iteration/lexically last section} updates the 
version of the object outside the parallel region



Example: Firstprivate and 
Lastprivate

for(i=0; (i<n) && b[i]; i++)
a[i] = b[i];

for(i=0; j<n; j++)
a[j] = 1.0;

Sets all elements of a to the value of the 
corresponding element in b, up to first zero 
value in b
Sets all further elements of a to 1.0



Example: Firstprivate and 
Lastprivate

#pragma omp parallel for lastprivate(i)
for(i=0; (i<n) && b[i]; i++)

a[i] = b[i];
#pragma omp parallel for firstprivate(i)
for(i=0; j<n; j++)

a[j] = 1.0;

Sets all elements of a to the value of the 
corresponding element in b, up to first zero 
value in b
Sets all further elements of a to 1.0



Data Environment Directives

Private
Firstprivate
Lastprivate
Reduction
Threadprivate
Copyin

For good performance, OpenMP code should use 
private variables whenever possible

Reduces cache problems

However, this could waste a lot of memory
Use of reductions also extremely important



Mapping Iterations to Threads
schedule clause of the for directive
• Recipe for mapping iterations to threads
• Usage: schedule(scheduling_class[, parameter]).
• Four scheduling classes

– static: work partitioned at compile time
• iterations statically divided into pieces of size chunk
• statically assigned to threads

– dynamic: work evenly partitioned at run time
• iterations are divided into pieces of size chunk
• chunks dynamically scheduled among the threads
• when a thread finishes one chunk, it is dynamically assigned another
• default chunk size is 1

– guided: guided self-scheduling
• chunk size is exponentially reduced with each dispatched piece of work
• the default chunk size is 1

– runtime:
• scheduling decision from environment variable OMP_SCHEDULE
• illegal to specify a chunk size for this clause.



Statically Mapping Iterations to 
Threads

• /* static scheduling of matrix multiplication loops */
• #pragma omp parallel default(private) \
• shared (a, b, c, dim) num_threads(4)
• #pragma omp for schedule(static)
• for (i = 0; i < dim; i++) {
• for (j = 0; j < dim; j++) {
• c(i,j) = 0;
• for (k = 0; k < dim; k++) {
• c(i,j) += a(i, k) * b(k, j);
• }
• }
• } 

• static schedule maps iterations to threads at compile time



Avoiding Unwanted Synchronization

• Default: worksharing for loops end with 
an implicit barrier

• Often, less synchronization is 
appropriate
– series of independent for-directives within 

a parallel construct
• nowait clause

– modifies a for directive
– avoids implicit barrier at end of for



Avoiding Synchronization with 
nowait

#pragma omp parallel
{
#pragma omp for nowait
for (i = 0; i < nmax; i++)

if (isEqual(name, current_list[i])
processCurrentName(name);

#pragma omp for
for (i = 0; i < mmax; i++)

if (isEqual(name, past_list[i])
processPastName(name);

}

any thread can begin second loop immediately without
waiting for other threads to finish first loop



Using the sections Directive
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{     taskA();
}

#pragma omp section
{      taskB();
}

#pragma omp section
{      taskC();
}

}
}

parallel section encloses all parallel work
sections: task parallelism
three concurrent tasks



Synchronization Constructs in 
OpenMP

#pragma omp barrier
#pragma omp single [clause list]

structured block
#pragma omp master

structured block
Use MASTER instead of SINGLE wherever possible

MASTER = IF-statement with no implicit BARRIER
equivalent to IF(omp_get_thread_num() == 0) {...}

SINGLE: implemented like other worksharing constructs
keeping track of which thread reached SINGLE first adds 

overhead



Synchronization Constructs in 
OpenMP

#pragma omp critical [(name)]
structured block

#pragma omp ordered
structured block

Similar to Pthreads mutex locks

critical section: like a named lock
for loops with carried dependences



Example Using critical

#pragma omp parallel
{ 
#pragma omp for nowait shared(best_cost)
for (i = 0; i < nmax; i++) {

int my_cost;
…
#pragma omp critical
{ if (best_cost <my_cost)

best_cost = my_cost;
} …

}
}
critical ensures mutual exclusion
when accessing shared state



Example Using ordered

#pragma omp parallel
{ 
#pragma omp for nowait shared(best_cost)

for (k = 0; k < nmax; k++) {
…
#pragma omp ordered
{ a[k] =  a[k-1] +
…;

} …
}

}
ordered ensures carried dependence does not cause a data race



OpenMP Library Functions

Processor count
int omp_get_num_procs(); /* # PE currently available */
int omp_in_parallel(); /* determine whether running in parallel */

Thread count and identity
/* max # threads for next parallel region. only call in serial region */

void omp_set_num_threads(int num_threads);
int omp_get_num_threads(); /*# threads currently active */
int omp_get_max_threads(); /* max # concurrent threads */
int omp_get_thread_num(); /* thread id */



OpenMP Environment Variables

• OMP_NUM_THREADS
– specifies the default number of threads for a 

parallel region
• OMP_SET_DYNAMIC

– specfies if the number of threads can be 
dynamically changed

• OMP_NESTED
– enables nested parallelism

• OMP_SCHEDULE
– specifies scheduling of for-loops if the clause 

specifies runtime



OpenMP SPMD Style

• SPMD (Single Program Multiple Data)
• The same program on each CPU 

accessed different data



OpenMP SPMD Style
#include <omp.h>
main()
{    long int i;

long int A[1000000];
float B[1000000];
float c[1000000];
printf("omp_get_num_procs = %4d \n",omp_get_num_procs());
printf("omp_get_max_threads = %4d \n",omp_get_max_threads());
#pragma omp parallel
{

#pragma omp for
for (i=1; i<=1000000; i++)

{ A[i] = i;
B[i] = A[i] *2.3;

}
}
for(i=10; i<=100; i++) printf(" %7d ",A[i]);
printf("\n");

}



#include <omp.h>
long int A[1000000];
int mystart, myend;
float B[1000000];
void mywork(int, int);

#pragma omp threadprivate(mystart, myend)
main()
{    long int i, iam;

int N, nthreads, chunk,temp;

#pragma omp parallel private(iam, nthreads, chunk)
{  nthreads = omp_get_num_threads();

iam = omp_get_thread_num();
chunk = (N + nthreads - 1) / nthreads;
mystart = iam * chunk + 1;
temp = (iam+1) * chunk;
myend =  (temp <= N) ? temp : N;
mywork(mystart, myend);

}
for(i=1; i<=100; i++) printf(" %7d ",A[i]);
printf("\n");

}

void mywork(int mystart, int myend)
{  int i;

for (i=mystart; i<=myend; i++)
{ A[i] = i;

B[i] = A[i] *2.3;
}

}

OpenMP SPMD Example
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