
Parallel Computing
平行計算

Tien-Hsiung Weng
翁添雄

大葉大學資工系
thweng@pu.edu.tw

Lecture 4



Programming Shared-Address 
Space with OpenMP

Lecture 4



Topics
• Introduction to OpenMP
• OpenMP directives

– specifying concurrency
• parallel regions
• loops, task parallelism

• Synchronization directives
– reductions, barrier, critical, ordered

• Data handling clauses
– shared, private, firstprivate, lastprivate

• Library primitives
• Environment variables
• Example of SPMD style OpenMP program



Introduction to OpenMP
• Open specifications for Multi Processing
• An API for explicit multi-threaded, shared memory parallelism
• Three components

– compiler directives
– runtime library routines
– environment variables

• Higher-level programming model than Pthreads
– support for concurrency, synchronization, and data handling
– not mutexes, condition variables, data scope, and initialization

• Portable
– API is specified for C/C++ and Fortran
– implementations on many platforms (most Unix, Windows NT)

• Standardized



Introduction to OpenMP
• Parallelism is explicit 

– It is not an automatic programming programming model
– programmer full control (and responsibility) over 

parallelization
• No data locality control 

– No guaranteed to make the most efficient use of shared 
memory

• Not necessarily implemented identically by all 
vendors

• designed for shared address spaced machines 
– Not for distributed memory parallel systems (by itself)



Introduction to OpenMP

• Advantages
– Ease of use
– Enables incremental parallelization of a 

serial program
– Supports both coarse-grain and fine-grain 

parallelism
– Portable
– Standard



OpenMP: Fork-Join Parallelism
• OpenMP program begins execution as a single 

master thread
• Master thread executes sequentially until 1st parallel 

region
• When a parallel region is encountered, master thread

– creates a group of threads
– becomes the master of this group of threads
– is assigned the thread id 0 within the group



OpenMP Directive Format
C and C++ use compiler directives

– prefix: #pragma …
• Fortran uses significant comments

– prefixes: !$OMP, C$OMP, *$OMP
• A directive consists of a directive name 

followed by clauses
• C: 

– #pragma omp parallel default(shared) private(i,j)
• Fortran: 

– !$OMP PARALLEL DEFAULT(SHARED) 
PRIVATE(i,j)



OpenMP parallel Region 
Directives

#pragma omp parallel [clause list]

Possible clauses in [clause list]
• Conditional parallelization

– if (scalar expression)
• determines whether the parallel construct creates threads

• Degree of concurrency
– num_threads(integer expression)

• Specifies the number of threads to create
• Data Handling

– private (variable list)
• specifies variables local to each thread

– firstprivate (variable list)
• similar to the private
• private variables are initialized to variable value before the parallel directive

– shared (variable list)
• specifies that variables are shared across all the threads



Interpreting an OpenMP Parallel 
Directive

#pragma omp parallel if (is_parallel==1) num_threads(8) \
private (a) shared (b) firstprivate(c) default(none)

{
/* structured block */

}

Meaning
• if (is_parallel== 1) num_threads(8)

– If the value of the variable is_parallel is one, create 8 threads
• private (a) shared (b)

– each thread gets private copies of variables a and c
– each thread shares a single copy of variable b

• firstprivate(c)
– each private copy of c is initialized with the value of c in main thread when the parallel 

directive is encountered
• default(none)

– default state of a variable is specified as none (rather than shared)
– signals error if not all variables are specified as shared or private



OpenMP Programming Model
OpenMP

Pthread

• A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP
compiler.



Reduction Clause in OpenMP
• The reduction clause specifies how multiple local copies 

of a variable at different threads are combined into a 
single copy at the master when threads exit. 

• The usage of the reduction clause is reduction (operator: 
variable list).

• The variables in the list are implicitly specified as being 
private to threads. 

• The operator can be one of +, *, -, &, |, ^, &&, and ||.
#pragma omp parallel reduction(+: sum) num_threads(8) { 
/* compute local sums here */ 
} 
/*sum here contains sum of all local instances of sums */ 



OpenMP Programming: Example
/* ******************************************************
An OpenMP version of a threaded program to compute PI.
****************************************************** */
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)
{

num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}

}



Worksharing DO/for Directive

• for directive partitions parallel iterations 
across threads

• DO is the analogous directive for Fortran
• Usage:

#pragma omp for [clause list]
/* for loop */

• Possible clauses in [clause list]
– private, firstprivate, lastprivate
– reduction
– schedule, nowait, and ordered

• Implicit barrier at end of for loop



Using Worksharing for Directive

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)
{

sum = 0;
#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

worksharing for divides work

Implicit barrier at end of loop



Example: Matrix Multiply 

#pragma omp parallel for
for(i=0; i<n; i++)

for(j=0; j<n; j++) {
c[i][j] =0.0;
for (k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][i];
}

a,b,c are shared
i,j,k are private



Private Variables

#pragma omp parallel for private(list)

• Compiler sets up a private copy of each 
variable in the list for each thread

• Our examples use OpenMP for and DO
• But these apply to other region and 

worksharing directives
• For compiler: thread has its own stack



Example: Private Variables

for (i=0; i<n; i++) {
tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}

Swaps the values of a and b
Loop-carried dependence on tmp
Easily fixed by privatizing tmp



Example: Private Variables

#pragma omp parallel for private(tmp)
for (i=0; i<n; i++) {

tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}

Removes dependence on tmp
Would be more difficult to do in Pthreads



Example: Private Variables

for (i=0; i<n; i++) {
tmp[i] = a[i];
a[i] = b[i];
b[i] = tmp[i];

}

Requires sequential program change
Wasteful in space, O(n) vs O(p)



Example: Private Variables

F()
{   int tmp;   /* local allocation on stack */

for (i=0; i<n; i++) {
tmp[i] = a[i];
a[i] = b[i];
b[i] = tmp[i];  

}
}

So, tmp is local to each thread



Firstprivate and Lastprivate

The initial and final values of private variables 
are unspecified

A firstprivate variable is private, and the private 
copies are initialized using its value before the 
loop

A lastprivate variable is private, and the thread 
executing the {sequentially last 
iteration/lexically last section} updates the 
version of the object outside the parallel region



Example: Firstprivate and 
Lastprivate

for(i=0; (i<n) && b[i]; i++)
a[i] = b[i];

for(i=0; j<n; j++)
a[j] = 1.0;

Sets all elements of a to the value of the 
corresponding element in b, up to first zero 
value in b
Sets all further elements of a to 1.0



Example: Firstprivate and 
Lastprivate

#pragma omp parallel for lastprivate(i)
for(i=0; (i<n) && b[i]; i++)

a[i] = b[i];
#pragma omp parallel for firstprivate(i)
for(i=0; j<n; j++)

a[j] = 1.0;

Sets all elements of a to the value of the 
corresponding element in b, up to first zero 
value in b
Sets all further elements of a to 1.0



Data Environment Directives

Private
Firstprivate
Lastprivate
Reduction
Threadprivate
Copyin

For good performance, OpenMP code should use 
private variables whenever possible

Reduces cache problems

However, this could waste a lot of memory
Use of reductions also extremely important



Mapping Iterations to Threads
schedule clause of the for directive
• Recipe for mapping iterations to threads
• Usage: schedule(scheduling_class[, parameter]).
• Four scheduling classes

– static: work partitioned at compile time
• iterations statically divided into pieces of size chunk
• statically assigned to threads

– dynamic: work evenly partitioned at run time
• iterations are divided into pieces of size chunk
• chunks dynamically scheduled among the threads
• when a thread finishes one chunk, it is dynamically assigned another
• default chunk size is 1

– guided: guided self-scheduling
• chunk size is exponentially reduced with each dispatched piece of work
• the default chunk size is 1

– runtime:
• scheduling decision from environment variable OMP_SCHEDULE
• illegal to specify a chunk size for this clause.



Statically Mapping Iterations to 
Threads

• /* static scheduling of matrix multiplication loops */
• #pragma omp parallel default(private) \
• shared (a, b, c, dim) num_threads(4)
• #pragma omp for schedule(static)
• for (i = 0; i < dim; i++) {
• for (j = 0; j < dim; j++) {
• c(i,j) = 0;
• for (k = 0; k < dim; k++) {
• c(i,j) += a(i, k) * b(k, j);
• }
• }
• } 

• static schedule maps iterations to threads at compile time



Avoiding Unwanted Synchronization

• Default: worksharing for loops end with 
an implicit barrier

• Often, less synchronization is 
appropriate
– series of independent for-directives within 

a parallel construct
• nowait clause

– modifies a for directive
– avoids implicit barrier at end of for



Avoiding Synchronization with 
nowait

#pragma omp parallel
{
#pragma omp for nowait
for (i = 0; i < nmax; i++)

if (isEqual(name, current_list[i])
processCurrentName(name);

#pragma omp for
for (i = 0; i < mmax; i++)

if (isEqual(name, past_list[i])
processPastName(name);

}

any thread can begin second loop immediately without
waiting for other threads to finish first loop



Using the sections Directive
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{     taskA();
}

#pragma omp section
{      taskB();
}

#pragma omp section
{      taskC();
}

}
}

parallel section encloses all parallel work
sections: task parallelism
three concurrent tasks



Synchronization Constructs in 
OpenMP

#pragma omp barrier
#pragma omp single [clause list]

structured block
#pragma omp master

structured block
Use MASTER instead of SINGLE wherever possible

MASTER = IF-statement with no implicit BARRIER
equivalent to IF(omp_get_thread_num() == 0) {...}

SINGLE: implemented like other worksharing constructs
keeping track of which thread reached SINGLE first adds 

overhead



Synchronization Constructs in 
OpenMP

#pragma omp critical [(name)]
structured block

#pragma omp ordered
structured block

Similar to Pthreads mutex locks

critical section: like a named lock
for loops with carried dependences



Example Using critical

#pragma omp parallel
{ 
#pragma omp for nowait shared(best_cost)
for (i = 0; i < nmax; i++) {

int my_cost;
…
#pragma omp critical
{ if (best_cost <my_cost)

best_cost = my_cost;
} …

}
}
critical ensures mutual exclusion
when accessing shared state



Example Using ordered

#pragma omp parallel
{ 
#pragma omp for nowait shared(best_cost)

for (k = 0; k < nmax; k++) {
…
#pragma omp ordered
{ a[k] =  a[k-1] +
…;

} …
}

}
ordered ensures carried dependence does not cause a data race



OpenMP Library Functions

Processor count
int omp_get_num_procs(); /* # PE currently available */
int omp_in_parallel(); /* determine whether running in parallel */

Thread count and identity
/* max # threads for next parallel region. only call in serial region */

void omp_set_num_threads(int num_threads);
int omp_get_num_threads(); /*# threads currently active */
int omp_get_max_threads(); /* max # concurrent threads */
int omp_get_thread_num(); /* thread id */



OpenMP Environment Variables

• OMP_NUM_THREADS
– specifies the default number of threads for a 

parallel region
• OMP_SET_DYNAMIC

– specfies if the number of threads can be 
dynamically changed

• OMP_NESTED
– enables nested parallelism

• OMP_SCHEDULE
– specifies scheduling of for-loops if the clause 

specifies runtime



OpenMP SPMD Style

• SPMD (Single Program Multiple Data)
• The same program on each CPU 

accessed different data



OpenMP SPMD Style
#include <omp.h>
main()
{    long int i;

long int A[1000000];
float B[1000000];
float c[1000000];
printf("omp_get_num_procs = %4d \n",omp_get_num_procs());
printf("omp_get_max_threads = %4d \n",omp_get_max_threads());
#pragma omp parallel
{

#pragma omp for
for (i=1; i<=1000000; i++)

{ A[i] = i;
B[i] = A[i] *2.3;

}
}
for(i=10; i<=100; i++) printf(" %7d ",A[i]);
printf("\n");

}



#include <omp.h>
long int A[1000000];
int mystart, myend;
float B[1000000];
void mywork(int, int);

#pragma omp threadprivate(mystart, myend)
main()
{    long int i, iam;

int N, nthreads, chunk,temp;

#pragma omp parallel private(iam, nthreads, chunk)
{  nthreads = omp_get_num_threads();

iam = omp_get_thread_num();
chunk = (N + nthreads - 1) / nthreads;
mystart = iam * chunk + 1;
temp = (iam+1) * chunk;
myend =  (temp <= N) ? temp : N;
mywork(mystart, myend);

}
for(i=1; i<=100; i++) printf(" %7d ",A[i]);
printf("\n");

}

void mywork(int mystart, int myend)
{  int i;

for (i=mystart; i<=myend; i++)
{ A[i] = i;

B[i] = A[i] *2.3;
}

}

OpenMP SPMD Example


	Parallel Computing平行計算
	Programming Shared-Address Space with OpenMP
	Topics
	Introduction to OpenMP
	Introduction to OpenMP
	Introduction to OpenMP
	OpenMP: Fork-Join Parallelism
	OpenMP Directive Format
	OpenMP parallel Region Directives
	Interpreting an OpenMP Parallel Directive
	OpenMP Programming Model
	Reduction Clause in OpenMP
	OpenMP Programming: Example
	Worksharing DO/for Directive
	Using Worksharing for Directive
	Example: Matrix Multiply
	Private Variables
	Example: Private Variables
	Example: Private Variables
	Example: Private Variables
	Example: Private Variables
	Firstprivate and Lastprivate
	Example: Firstprivate and Lastprivate
	Example: Firstprivate and Lastprivate
	Data Environment Directives
	Mapping Iterations to Threads
	Statically Mapping Iterations to Threads
	Avoiding Unwanted Synchronization
	Avoiding Synchronization with nowait
	Using the sections Directive
	Synchronization Constructs in OpenMP
	Synchronization Constructs in OpenMP
	Example Using critical
	Example Using ordered
	OpenMP Library Functions
	OpenMP Environment Variables
	OpenMP SPMD Style
	OpenMP SPMD Style
	OpenMP SPMD Example

