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Abstract

Traditional methods of association rule mining consider the appearance of an item in a transaction, whether or not it is
purchased, as a binary variable. However, customers may purchase more than one of the same item, and the unit cost may
vary among items. Utility mining, a generalized form of the share mining model, attempts to overcome this problem. Since
the Apriori pruning strategy cannot identify high utility itemsets, developing an efficient algorithm is crucial for utility min-
ing. This study proposes the Isolated Items Discarding Strategy (IIDS), which can be applied to any existing level-wise
utility mining method to reduce candidates and to improve performance. The most efficient known models for share min-
ing are ShFSM and DCG, which also work adequately for utility mining as well. By applying IIDS to ShFSM and DCG,
the two methods FUM and DCG+ were implemented, respectively. For both synthetic and real datasets, experimental
results reveal that the performance of FUM and DCG+ is more efficient than that of ShFSM and DCG, respectively.
Therefore, IIDS is an effective strategy for utility mining.
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1. Introduction

The development of data mining techniques has focused on efficiently discovering hidden information from
large databases that is useful for corporate decision-makers [20]. In recent years, data mining has become an
important field of research [13]. Association rule mining [2,3] is widely used to solve data mining problems in
numerous applications, including financial analysis, the retail industry, and business decision-making [13].

In a transaction database where each transaction is a set of items or products, the application of association
rules identifies interesting itemsets from the database [2,3]. Traditionally, an association rule is interesting if its
support and confidence values are not less than the minimum support (minSup) and minimum confidence
(minConf) thresholds. An itemset X is frequent if the support value of X satisfies the minSup requirement.
Using discovered frequent itemsets can directly generate the corresponding association rules. Accordingly,
research on association rule mining usually focuses on establishing efficient methods to identify all frequent
itemsets. Numerous efficient methods have been proposed to discover frequent itemsets, such as level-wise
algorithms [2,3,7,8,12,30] and pattern-growth methods [1,15,16,21,26].

In many applications, the importance of each item to the user varies. Cai et al. [9] first assigned item weights
to overcome this problem. The weight of an item indicates the profitability of the product. Several researchers
have proposed weighted association rule schemes [29,33], but these algorithms still employ support values of
itemsets to measure their importance. Support values only consider whether an item is bought in a transaction.
The appearance of each item in a transaction is regarded as a binary variable, which does not reflect the quan-
tities or prices of items purchased in each transaction. Table 1 shows a sample transaction database that
includes six transactions. The series of numbers in the column ‘‘Count’’ indicates the sale amount for each
item in each transaction. Item B appears in four transactions; therefore, according to the definition of the sup-
port value, item B has a support count of four. However, the total sale amount of item B is nine
(1 + 4 + 1 + 3).

In reality, multiple quantities of a product may be bought in one transaction. An item should be weighted
differently for each transaction, even if each transaction has the same length; thus, deriving interesting itemsets
from support values may be misleading. Carter et al. [10] propose the share-confidence model to discover use-
ful knowledge about numerical attributes associated with items in a transaction. Several other methods have
since been proposed to efficiently discover share-frequent (SH-frequent) itemsets with infrequent subsets
[4–6,17,18,22–24]. Yao et al. [34,35] generalize the share-confidence model [6] to develop the conventional util-

ity mining model. This model can be used to measure the utility of an itemset in terms of net profit, total cost,
or time spent [27,28,34,35].

Applications may have different objectives for various data models; thus, there is no single measure that is
suitable for every application. Recently, Yao et al. [36] attempted to build a unified framework for utility-
based measures [11,27,28,32,34–36] that allows the user to select a suitable utility mining tool for a specific
application; however, this framework only employs existing tools. Thus, to effectively discover high utility
itemsets, the need for efficient algorithms remains urgent.

This study focuses on conventional utility mining. In the conventional utility mining model, an item has
both internal and external utility [35]. The internal utility of an item is the numerical value assigned to it in
a transaction, for example, the quantity of an item purchased in a transaction. The external utilities of all items
are stored in a utility table (i.e. unit profit table or unit cost table). Table 2 provides an example that lists the
unit profit for each item. For example, selling one unit of product A results in a profit of three dollars. Using

Table 1
Example of a transaction database with counting

TID Transaction Count

T01 {A,B,C,D,G,H} {1,1,1,1,1,1}
T02 {A,C,E,F} {4,3,1,2}
T03 {A,C,E} {4,3,3}
T04 {B,C,D,F} {4,1,2,2}
T05 {A,B,D} {3,1,2}
T06 {B,C,D} {3,2,1}
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the sample database in Table 1 and its associated utility table (Table 2), users can compute the total profit
from each itemset. The utility of an itemset is the summation of its item utilities, which are the products of
items’ internal and external utilities, in each transaction. Consider the transaction database in Table 1 with
the external utility values found in Table 2. The utility value of {A,B} is (1 · 3 + 1 · 2) + (3 · 3
+ 1 · 2) = 16, since {A,B} is only contained in T01 and T05. Based on the sample data, selling products A

and B together will yield a total profit of $16.
The profitability of an itemset or the total cost of stocking an itemset cannot be determined using the support

value alone. Thus, in practical terms, utility mining can be more useful than traditional association rule mining.

Example 1.1. Consider the sample database in Table 1 and the unit profit for each item in Table 2. Suppose that
the goal of a sales manager is to determine which itemsets can generate a profit greater than the target value (i.e.
the threshold). Table 3 lists the 18 most frequent itemsets with the profit of each itemset. Using a traditional
association rule mining tool, such as Apriori, with a support threshold of 40% causes {A,E} and {A,C,E} to be
neglected, even though they are the two highest profit itemsets in the utility model. Appearing in transactions T02
and T03, the profits of the itemset {A,C,E} is ð4� 3þ 3� 1þ 1� 5Þ þ ð4� 3þ 3� 1þ 3� 5Þ ¼ 50.
Therefore, utility mining is more beneficial than traditional association rules in such scenarios.

Given a pre-defined minimum utility (minUtil) threshold, an itemset is considered high utility if its utility value
is greater than or equal to the threshold value; otherwise, the itemset has a low utility value. The goal of utility
mining is to discover all high utility itemsets in a transaction database using the utility table. The share-confidence
model (herein referred to as share mining) is a variant of utility mining. If the internal utility value of each item is
multiplied by its external utility value in each transaction, an SH-frequent itemset can be derived and called a high
utility itemset. The algorithms for discovering SH-frequent itemsets can easily be modified to find high utility
itemsets. Therefore, utility mining methods described in this study will also encompass share mining methods.

A high utility itemset often includes some low utility subsets but may not include any high utility subset.
Consequently, the downward closure property of Apriori [2,3] cannot be directly applied to discover high util-
ity itemsets. Intuitively, an exhaustive search method can be applied to identify all high utility itemsets. How-
ever, such a method is too time-consuming for a large dataset environment. Several heuristic methods have
been proposed to accelerate the discovery of high utility (or SH-frequent) itemsets, such as the MEU (UMin-
ing_H) [27,28,34,35], SIP, CAC, and IAB [4,6] methods. Nevertheless, these predictive methods may not dis-
cover some high utility itemsets. Recently, Li et al. first developed some efficient approaches, including the
FSM, SuFSM, ShFSM, and DCG methods, to identify all SH-frequent itemsets [22–24]. In the meanwhile,
Liu et al. also presented a Two-Phase (TP) method to discover all high utility itemsets [27,28].

The performances of existing level-wise utility mining methods primarily depend on the number of candi-
dates generated in each pass. The challenge of utility mining is how to effectively reduce the number of
candidates. This study proposes the Isolated Items Discarding Strategy (IIDS), which can be applied to each
level-wise utility mining method to further reduce the number of redundant candidates. In each pass, a utility
mining method with IIDS scans a database that is smaller than the original by skipping isolated items to effi-
ciently improve performance. This study focuses on the task of efficiently discovering all high utility itemsets.

Table 2
Example of a utility table

Item A B C D E F G H

Profit ($) 3 2 1 3 5 2 8 4

Table 3
Frequent itemsets with support values of at least 33%

Support (%) Itemset and its profit

83.3 {C: 10}
66.7 {A: 36}, {B: 18}, {D: 18}, {B, D: 36}
50.0 {A, C: 34}, {B, C: 20}, {C, D: 16}, {B, C, D: 32}
33.3 {E: 20}, {F: 8}, {A, B: 16}, {A, D: 21}, {A, E: 44}, {C, E: 26}, {C, F: 12}, {A, B, D: 25}, {A, C, E: 50}
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The rest of this paper is organized as follows: Section 2 presents the background and an overview of the
current methods for solving the problem of utility mining. The methods of share mining that also work well
for utility mining are presented in Section 3. Section 4 explains the proposed isolated items discarding strategy.
Section 5 provides experimental results and evaluates the performance of the proposed strategy. Finally, we
conclude in Section 6 with a summary of our work.

2. Background and related work

2.1. Support-confidence model

Given a transaction database, the application of association rule mining attempts to discover significant
relationships among items. The formal definition is as follows.

Let I ¼ fi1; i2; . . . ; ing be the set of items. Let DB ¼ fT 1; T 2; . . . ; T zg be the transaction database, where Tq is
a transaction in DB and is a subset of I. That is, "T q 2 DB, T q � I , 1 6 q 6 z. Let X be a set of items, called an
itemset. If X is a subset of a transaction Tq, Tq is said to support X. The notation X ) Y expresses the form of
an association rule, where X � I ; Y � I and X \ Y ¼ ;. The two attributes support and confidence of each rule
must satisfy the two user pre-defined minSup and minConf thresholds, respectively. If s% of transactions in DB

contain X [ Y , the support value of X ) Y is s%. The itemset X [ Y with length k is called a frequent k-itemset
if its support value is not less than minSup. The rule X ) Y has the confidence value c% if the transactions
containing X in DB in which c% of them also contain Y.

Apriori is a multiple passes algorithm [2,3], is the best-known method for discovering frequent itemsets. The
Apriori principle states that each subset of a frequent itemset must be frequent; otherwise the itemset is infre-
quent. This property is also called the downward closure property or the anti-monotone property. In each pass,
Apriori scans a database once and employs the downward closure property to filter out many useless candidates.

2.2. Formal description of utility mining

Share mining has been proposed to overcome the shortcomings of traditional data mining, which overlooks
the variance in sale quantity and price/profitability among items in a transaction [6]. Utility mining, a general-
ized form of the share mining model, is based on measuring internal and external utilities [35]. Given a trans-
action database, a minimum utility threshold, and a utility table, the goal of utility mining is to discover all
high utility itemsets. According to the problem statement and the definitions in [35], the notations and defi-
nitions of utility mining, with some modifications for consistency, are described as follows:

Definition 2.1. A k-itemset X has an associated set of transactions in DB, denoted as DBX, where
DBX ¼ fT q 2 DB j X � T q � Ig. For example, in Table 1, DBfC;Dg ¼ fT 01; T 04; T 06g.

Definition 2.2. The internal utility value of item ip in transaction Tq, denoted as iu ðip; T qÞ, is the value of ip in
Tq. For example, in Table 1, iuðC; T 02Þ ¼ 3.

Definition 2.3. The external utility of item ip in a transaction database, denoted as eu(ip), is the value of ip in
the utility table of the database. For example, in Table 2, euðCÞ ¼ 1 and euðDÞ ¼ 3.

Definition 2.4. The utility value of item ip in transaction Tq, denoted as utilðip; T qÞ, is the product of iuðip; T qÞ and
eu(ip). That is, utilðip; T qÞ ¼ iuðip; T qÞ � euðipÞ, where ip 2 T q. For example, in Tables 1 and 2,
utilðB; T 04Þ ¼ 4� 2 ¼ 8. Intuitively, this can be viewed as when a dealer sells four Bs and yields a profit of eight
dollars in the transaction T 04. The utility value of itemset X in transaction Tq, denoted as utilðX ; T qÞ, is the sum of
the utility value of each item of X in Tq, where utilðX ; T qÞ ¼

P
ip2X�T q

utilðip; T qÞ. For example, in Tables 1 and 2,
utilðfC;E; F g; T 02Þ ¼ utilðC; T 02Þ þ utilðE; T 02Þ þ utilðF ; T 02Þ ¼ 3� 1þ 1� 5þ 2� 2 ¼ 12.

In particular, utilðT q; T qÞ is called the transaction utility value of Tq. Table 4 lists the transaction utility values
of the sample database in Table 1.
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Definition 2.5. The local utility value of an itemset X in DB, denoted as LutilðX Þ, is the sum of the itemset utility

values of X in DBX. That is, LutilðX Þ ¼
P

T q2DBx
utilðX ; T qÞ ¼

P
T q2DBx

P
ip2X�T q

utilðip; T qÞ. For example, in

Table 1, LutilðfC;DgÞ ¼ utilðfC;Dg; T 01Þ þ utilðfC;Dg; T 04Þ þ utilðfC;Dg; T 06Þ ¼ 4þ 7þ 5 ¼ 16.

Definition 2.6. The total utility value of DB, denoted as TutilðDBÞ, is the sum of all transaction utility values in
DB. That is, TutilðDBÞ ¼

P
T q2DButilðT q; T qÞ. For example, TutilðDBÞ ¼ 122 as shown in Table 4.

Definition 2.7. The utility value of itemset X in DB, denoted as UTIL(X), is the ratio of the local utility value of X

to the total utility value in DB. That is, UTILðX Þ ¼ LutilðX Þ
TutilðDBÞ. In other words, UTIL(X) indicates the percentage of

the utility value that itemset X contributed in DB. For example, in Table 1, UTILðfC;DgÞ ¼ 16=122 ¼ 13:1%.

Henceforth, in this study, the utility value of an itemset X refers to UTIL(X), except where indicates
otherwise.

Definition 2.8. Given a minUtil value, if UTILðX ÞP minUtil, the itemset X is a high utility itemset; otherwise X

is a low utility itemset. The local utility value of the threshold is called the minimum local utility value, denoted
as minLutil. Clearly, minLutil ¼ minUtil� TutilðDBÞ.

Example 2.1. Consider the transaction database presented in Table 1 and minUtil ¼ 30%. Table 5 lists the local
utility value and the utility value of each 1-itemset, where TutilðDBÞ ¼ 122. Let X ¼ fA;C;Eg;
LutilðX Þ ¼ utilðX ; T 02Þ þ utilðX ; T 03Þ ¼ 20þ 30 ¼ 50. Therefore, UTILðX Þ ¼ LutilðX Þ

TutilðDBÞ ¼ 50=122 ¼ 41:0% P
30%. The itemset X is a high utility itemset. Table 6 lists all high utility itemsets.

Although there are two high utility itemsets in the sample database as listed in Tables 6. Table 5 shows that
there are no high utility 1-itemsets (the utility values of 1-itemsets are all less than 30%). Thus, in Example 2.1,
applying the downward closure property to the utility mining model will reveal no high utility itemsets.

2.3. Existing algorithms

Exhaustive search methods, such as ZP and ZSP [4,6], can discover all high utility itemsets in a database but
may be excessively time-consuming for real-world applications. On the other hand, predictive approaches gen-
erally cannot ensure that the mining result contains the complete set of high utility itemsets [5,6,34,35]. To
address this urgent problem, Li et al. proposed the FSM algorithm, a non-exhaustive search method, to dis-
cover all SH-frequent itemsets [22]. Liu et al. presented a Two-Phase (TP) algorithm for the same purpose
[27,28]. Li et al. also suggested efficient algorithms such as ShFSM and DCG [23,24].

Table 4
Transaction utility values of the sample database in Table 1

Transaction T01 T02 T03 T04 T05 T06 Tutil(DB)
Transaction utility 21 24 30 19 17 11 122

Table 5
All local utility values of 1-itemsets of Table 1

1-itemset X {A} {B} {C} {D} {E} {F} {G} {H} Total
Lutil(X) 36 18 10 18 20 8 8 4 122
UTIL(X) 29.5% 14.8% 8.2% 14.8% 16.4% 6.6% 6.6% 3.3% 100%

Table 6
All high utility itemsets

High utility itemset X {A,E} {A,C,E}
Lutil(X) 44 50
UTIL(X) 36.1% 41.0%
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TP and ShFSM methods employ similar properties to speed up the mining process. The greatest difference
between the two methods is that TP has two phases, a level-wise process with multiple passes in the first phase
(Phase I) and an extra DB scanning pass in the second phase (Phase II). ShFSM does not require that the addi-
tional second phase.

ShFSM relies on the critical function value of each candidate to determine which candidates are useless. Let
X be a candidate k-itemset, where k > 0. If the critical function value of X, CF(X), is less than the minimum
threshold, then no superset of X can be SH-frequent [23]. Therefore, in the kth pass, ShFSM scans the data-
base to calculate the share value of each itemset. Then, ShFSM removes all useless candidate k-itemsets and
employs the remaining candidates to generate the candidate (k + 1)-itemsets for the next pass.

However, ShFSM does require the join and prune steps of candidate generation in each pass. Therefore, Li
et al. proposed the Direct Candidates Generation (DCG) algorithm to improve the performance of the mining
process [24]. DCG is a level-wise method that DCG maintains an array for each candidate during each pass.
The array of each candidate k-itemset stores the critical function values of its (k + 1)-supersets. Thus, after the
kth pass, DCG discovers all SH-frequent k-itemsets and directly generates all candidate (k + 1)-itemsets for
the next pass without join and prune steps.

3. Utility mining using share mining methods

Given a transaction database with a utility table, if the value of ip in each transaction is replaced by
iuðip; T qÞ � euðipÞ, then a utility mining task simply becomes a share mining process. Therefore, each approach
for discovering share-frequent itemsets also works well in utility mining.

Definition 3.1. Let X be a k-itemset. A superset of X with length k + i contained in a transaction Tq is denoted
as X kþi, where X � X kþi � T q 2 DB and i > 0. For example, in Table 1, let X ¼ fC;Eg. X kþ1 ¼ fA;C;Eg or
fC;E; F g, since fA;C;Eg and fC;E; F g both contain X, have three elements, and appear in at least one
transaction in DB.

Definition 3.2. Let X kþi be an arbitrary ðk þ iÞ-superset of k-itemset X, where i > 0. Function CF(X) is a crit-
ical function of X if LutilðX kþiÞ 6 CF ðX Þ for all X kþi. That is, CF(X) is the upper bound of the utility value of
X’s ðk þ iÞ-supersets.

Theorem 3.1. Let X kþi be an arbitrary ðk þ iÞ-superset of k-itemset X, where i > 0. Assume that there exists a

critical function CF ðX ÞP LutilðX kþiÞ for all X kþi. If CF(X) < minLutil, then no superset of X has high utility.

The Proof of Theorem 3.1 is provided in Appendix A.
According to Theorem 3.1, if CF(X) < minLutil, then no superset of X has high utility. Thus, X can be

removed from the candidate set after all high utility itemsets having a length less than or equal to jXj are
obtained, and the inequality also holds.

The goal of the existing algorithms for utility mining is to efficiently eliminate useless candidates in each
pass. Reducing the critical function value of each itemset increases the performance of the utility mining
process. Therefore, the calculation of CF(X) plays an important role in utility mining. In the next section,
this study introduces the strategy of isolated items discarding, which can be applied to existing utility min-
ing methods to further reduce the number of candidates and to improve performance. This study applies
the two best share mining methods, ShFSM and DCG, to the utility mining model. ShFSM is an efficient
and typical method for share mining. The ShFSM method, modified [23] for utility mining is provided as
follows:

Definition 3.3. Let X be a k-itemset. The set which contains all X kþi in DB is denoted as SðX kþiÞ, that is,
X kþi 2 SðX kþiÞ. For example, in Table 1, Let X ¼ fC;Eg; SðX kþ1Þ ¼ ffA;C;Eg; fC;E; F gg.

Definition 3.4. Given a transaction database and a k-itemset X, dbSðX kþiÞ is the set of transactions in which each
transaction contains at least one X kþi in DB, where i > 0. For example, in Table 1, if X ¼ fC;Eg and i = 1,
then dbSðX kþ1Þ ¼ fT 02; T 03g.
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Lemma 3.1. dbSðX kþiÞ ¼ dbSðX kþ1Þ, for any k-itemset X and any i > 0.

Theorem 3.2. Given a transaction database DB, let X kþi be an arbitrary ðk þ iÞ-superset of k-itemset X, where

i > 0, then LutilðX kþiÞ 6 TutilðdbSðX kþ1ÞÞ.

Their proofs are detailed in Appendix A.
ShFSM utilizes TutilðdbSðX kþ1ÞÞ as the critical function value of X. According to Definition 3.2 and Theorem

3.1, if TutilðdbSðX kþ1ÞÞ < minLutil, then all supersets of the k-itemset X are low utilities. The value of
TutilðdbSðX kþ1ÞÞ can easily be obtained by scanning DB. An arbitrary candidate X can be pruned if
CF(X) < minLutil. Therefore, ShFSM avoids producing too many unnecessary candidates. ShFSM is a multi-
ple-pass algorithm. In the kth pass, ShFSM generates candidate k-itemsets, then scans the database once to
determine high utility itemsets and compute the critical function value of each candidate. After scanning
the database, the remaining set of candidate k-itemsets is called RCk, in which the critical function value of
each candidate is above minLutil. Applying the Apriori join and prune steps to RCk, ShFSM generates can-
didate (k + 1)-itemsets for the next pass.

The DCG method is efficient for discovering SH-frequent itemsets [24]. To discover high utility itemsets,
like ShFSM, we simply replace the share value of each item with its utility value in the dataset and properly
set up the minimum threshold. DCG can be easily utilized for mining high utility itemsets.

4. Proposed strategy and algorithms

As described in the previous section, a well-designed critical function not only greatly reduces the number
of candidate itemsets, but also significantly increases the performance of the mining process. This study pro-
poses the Isolated Items Discarding Strategy (IIDS) as an efficient way of designing a critical function. IIDS
can be applied to any existing level-wise utility mining method (including ShFSM, DCG, and TP) that uses a
critical function to decrease the number of candidates. Although, the TP method does not employ the concept
of a critical function, the transaction-weighted downward closure property [27,28] can be regarded as a variant
of the critical function.

4.1. Isolated items discarding strategy (IIDS)

For level-wise utility mining methods, some definitions for IIDS are as follows:

Definition 4.1. Given minUtil, Ck is the set of candidate k-itemset in the kth pass of the utility mining process.
After the kth pass, the process generates RCk. RCk is a subset of Ck, in which each k-itemset X satisfies the
inequality CF ðX ÞP minLutil.

Definition 4.2. For a level-wise utility mining method, after the kth pass, RCk can be generated, where k > 0. An
item ip 2 I is isolated if ip 62 X for all X 2 RCk. Let ISetkþ1 be the set of isolated items, which is generated after the
kth pass. That is, ISetkþ1 ¼ I � f8ip j ip 2

S
X j2RCk

X jg. For example, consider the database in Table 1 and the util-
ity table in Table 2 using ShFSM to discover high utility itemsets. Let minUtil ¼ 30%;minLutil ¼ 122�
30% ¼ 33:6. C1 ¼ fA;B;C;D;E; F ;G;Hg. After the first scan DB, we obtain CF ðAÞ ¼ 92;CF ðBÞ ¼ 68;CF ðCÞ
¼ 105;CF ðDÞ ¼ 68;CF ðEÞ ¼ 54;CF ðF Þ ¼ 43;CF ðGÞ ¼ 21, and CF ðHÞ ¼ 21. Therefore, RC1 ¼ fA;B;C;
D;E; F g. According to the definition, ISet2 ¼ fG;Hg.

For each X 2 Ck, if CF(X) P minLutil, then X 2 RCk. Therefore, an isolated item cannot appear in any
itemset whose critical function value is above the minimum threshold.

Definition 4.3. In the kth pass, where k > 0, given a transaction Tq, let NT k
q denote a transaction that contains

all items of Tq, exclusive of all items in ISetk. That is, NT k
q ¼ T q � ISetk. Similarly, NDBk denotes the set which

consists of NT k
q for all Tq in DB. NDBk

X is the set which consists of NT k
q for all Tq in DBX. In the first pass, ISet1

is set to ;. Since for each NT k
q � T q;NDBk � DB.
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Definition 4.4. Given minUtil, let HUI(DB) denote the set of all high utility itemsets and let HIr denote a high
utility itemset. Therefore, HIr 2 HUIðDBÞ, where 1 6 r 6 jHUIðDBÞj. In addition, HUIk(DB) is a subset of
HUI(DB), where the length of each high utility itemset in HUIk(DB) is k and k > 0. Similarly, HUIPkðDBÞ
is a subset of HUI(DB), in which the length of each high utility itemset in HUIPkðDBÞ is larger than or equal
to k.

Lemma 4.1. Given minUtil and a utility table, for all HIr 2 HUIPkðDBÞ, if HIr � T q, then HIr � NT k
q.

Corollary 4.1. Given minUtil and a utility table, for all HIr 2 HUIPkðDBÞ, if HIr � T q, then

utilðHIr; T qÞ ¼ utilðHIr;NT k
qÞ, where k > 0.

Theorem 4.1. Given minUtil and a utility table, the two high utility sets, HUIPkðDBÞ and HUIPkðNDBkÞ, of the

utility mining on DB and NDBk, respectively, are identical, where k > 0.

Theorem 4.2. Given minUtil and a utility table, the two high utility sets, HUIk (DB) and HUIkðNDBkÞ, of the

utility mining on DB and NDBk, respectively, are identical, where k > 0.

Their proofs are detailed in Appendix B.
Since HUIkðDBÞ ¼ HUIkðNDBkÞ in each pass, deleting each isolated item of ISetk from DB does not change

the result of utility mining. To avoid generating extra NDBk and rapidly increasing I/O costs in each pass,
when scanning DB, the proposed IIDS skips isolated items of ISetk in each transaction. IIDS can be applied
to any efficient and level-wise utility mining method to improve performance by replacing DB with NDBk.

Fig. 1 shows the utility mining process with IIDS. If the utility mining method is a two-phase algorithm,
such as TP, HUIk(DB) is not generated in the dashed line box, and the method requires an extra second phase
to determine HUI(DB). This study proposes that IIDS be applied to the two best share mining methods,
ShFSM and DCG, and renames them Fast Utility Mining (FUM) and DCG+, respectively.

4.2. FUM and DCG+ methods

Let Ndbk
SðX kþ1Þ be the transaction set of NT k

q in which each NT k
q contains at least one X kþ1. In the kth pass,

FUM replaces the critical function TutilðdbSðX kþ1ÞÞ of each candidate of ShFSM with TutilðNdbSðX kþ1ÞÞ. If k = 1,
then the set of isolated items is empty and TutilðdbSðX kþ1ÞÞ ¼ TutilðNdbSðX kþ1ÞÞ. Scanning NDBk can easily obtain
the value of TutilðNdbSðX kþ1ÞÞ. For each itemset X, TutilðNdbSðX kþ1ÞÞ 6 TutilðdbSðX kþ1ÞÞ. Therefore, FUM has a
lower critical function value of each k-itemset X than ShFSM does for k > 1. If each itemset in RCk is sorted
in alphabetical order, the join step can efficiently skip joining useless itemsets. Thus, instead of RCk joining
RC1 in the join step, FUM uses the sorted itemsets in RCk to join with each other. The following example
shows the difference in Ck and RCk sizes between ShFSM and FUM.

Example 4.1. Consider the example database in Table 1 and the utility table in Table 2 with minUtilof 30%.
Therefore, minLutil ¼ 122� 30% ¼ 36:6. In Figs. 2 and 3, the number in the middle of each box is the critical
function value calculated by ShFSM and FUM, respectively. The number in the bottom of each box is the local
utility value. The two colored boxes denote the two high utility itemsets as shown in Figs. 2 and 3. For ShFSM in
Fig. 2, CF ðfA;BgÞ ¼ TutilðdbSðX kþ1ÞÞ ¼ utilðT 01; T 01Þ þ utilðT 05; T 05Þ ¼ 21þ 17 ¼ 38. Contrast this to FUM
in Fig. 3, where RC1 ¼ fA;B;C;D;E; F g and ISet2 ¼ fG;Hg after the first pass. For the second pass, FUM scans
DB, skipping isolated items. The database NDB2 and the transaction utility of each T 2

q are listed in Table 7. None

Fig. 1. Process of utility mining with IIDS.
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of the transactions in NDB2 include an isolated item. Therefore, CF ðfA;BgÞ ¼ TutilðNdbk
SðX kþ1ÞÞ ¼ utilðT 01�

fG;Hg; T 01� fG;HgÞ þ utilðT 05; T 05Þ ¼ 9þ 17 ¼ 26. Since CF ðfA;BgÞ < 36:6, no superset of fA;Bg has a
high utility value.

In Fig. 2, in the three levels of the lattice, ShFSM generates 8, 15, and 5 candidates, respectively. The can-
didate itemsets in the dotted line boxes do not appear in RCk. As shown in the solid line boxes, ShFSM main-
tains 6 candidates in RC1, 9 candidates in RC2, and one candidate in RC3. The critical function values of them
are at least 36.6.

The difference between ShFSM and FUM arises in the second and third passes. In the second pass, FUM
produces 15 candidates, finds a high utility itemset fA;Eg, and then keeps seven itemsets in RC2 as shown in
the solid line boxes in the second level of Fig. 3. Next, FUM produces two candidate 3-itemsets, fA;C;Eg and
fB;C;Dg, from RC2. In the third pass, the high utility itemset fA;C;Eg is discovered. No critical function
value of candidate 3-itemsets reaches 36.6, j RC3 j¼ 0. The FUM process terminates. In the second and third
passes, FUM has smaller Ck and RCk sets than ShFSM.

Fig. 2. An example of candidate generation by ShFSM with minLutil = 36.6.

Fig. 3. An example of candidate generation by FUM with minLutil = 36.6.

Table 7
NDB2: Scan DB in the second pass of FUM by skipping isolated items

TID Transaction ðNT 2
qÞ Count Isolated item Transaction utility

T01 {A,B,C,D} {1,1,1,1} G,H 9
T02 {A,C,E,F} {4,3,1,2} 24
T03 {A,C,E} {4,3,3} 30
T04 {B,C,D,F} {4,1,2,2} 19
T05 {A,B,D} {3,1,2} 17
T06 {B,C,D} {3,2,1} 11
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The pseudo-code of the FUM algorithm is as follows:

Algorithm. FUM

Input: (1) DB: a transaction database with counts, (2) UT: utility table, and (3) minUtil: minimum utility
threshold
Output: All high utility itemsets
Procedure://minLutil ¼ minUtil� TutilðDBÞ

1. k:¼1; HUI1 ðDBÞ :¼ /;ISet1 :¼ /; C1 :¼ I;

2. foreach T 2 DB //scan DB

3. accumulate 8LutilðipÞ, and accumulate 8CFðipÞ // ip 2 T && 8ip 2 Ck

4. foreach ip 2 Ck // check all candidates

5. if LutilðipÞP minLutil // high utility

6. HUIkðDBÞ :¼ HUIkðDBÞ+ip;

7. if CFðipÞ < minLutil

8. Ck :¼ Ck � ip; // delete useless item

9. ISetkþ1 :¼ ISetkþ1 þ ip // add isolated item

10. RCk :¼ Ck;

11. whilej RCk j> 0 // next pass

12. k++; HUIkðDBÞ :¼ /;ISetkþ1 :¼ /;

13. foreach Xp;Xq 2 RCk�1 // use RCk�1 to generate Ck

14. Ck:¼Apriori-gen(Xp, Xq); // candidate generation

15. foreach T 2 DB // scan DB

16. accumulate LutilðXÞ, and accumulate CFðXÞ by skipping 8ip 2 ISetk; // 8X � T &&
8X 2 Ck

17. foreach X 2 Ck // check all candidates

18. if LutilðXÞP minLutil //high utility

19. HUIkðDBÞ :¼ HUIkðDBÞ þ X;

20. if CFðXÞ < minLutil

21. Ck :¼ Ck � X; // delete useless itemset

22. RCk :¼ Ck;
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23. determinate ISetkþ1 in which no item appears in RCk;

24. return HUIðDBÞ ¼
S

k
HUIkðDBÞ;

Lines 9 and 23 generate a set of isolated items, ISetkþ1, in each pass. In lines 15 and 16, the process skips all
isolated items to compute the critical function value of each candidate when scanning DB, so that the critical
function value of each candidate can be reduced.

Similarly, DCG+ is a fast utility mining DCG algorithm to be used with the proposed IIDS. The following
briefly describes how DCG is extended to become DCG+ by implementing IIDS.

Definition 4.5. Let the candidate k-itemset X be fi1; i2; . . . ; ikg in the order of literals, and let iq 2 I be an item.
If ik < iq then the (k + 1)-superset of X fi1; i2; . . . ; ik; iqg is defined as the monotoneðk þ 1Þ-superset of X and is
denoted as X kþ1

iq . For the example in Table 1, let X ¼ fB;C;Dg;X kþ1
F ¼ fB;C;D; F g.

In the kth pass, DCG scans the database once to determine which candidates are high utility. Meanwhile,
DCG calculates the critical function values of each candidate’s all monotone (k + 1)-supersets. Let X be a can-
didate with length k, DCG calculates the critical function value of each monotone (k + 1)-superset of X ;X kþ1

iq
,

as TutilðDBX kþ1
iq
Þ. The critical function value of X kþ1

iq
is the upper bound of its utility value. If

TutilðDBX kþ1
iq
ÞP minLutil, then DCG adds X kþ1

iq
to Ckþ1. Thus, DCG directly generates Ckþ1 without the join

and prune steps.
According to Theorem 4.2, HUIkðDBÞ ¼ HUIkðNDBkÞ. In each pass, instead of scanning DB, DCG+ scans

NDBk, which is a smaller database than DB, to obtain the identical set of high utility k-itemsets. DCG+ cal-
culates the critical function value of each monotone (k + 1)-superset of X ;X kþ1

iq
, as TutilðNDBk

X kþ1
iq
Þ. According

to Definition 4.3, NDBk
X kþ1

iq
� DBX kþ1

iq
. Therefore, TutilðNDBk

X kþ1
iq
Þ 6 TutilðDBX kþ1

iq
Þ. IIDS can reduce the critical

function values, so that DCG+ can delete more useless candidates than DCG. Without the redundancy, this
study omits the detailed algorithm of DCG+.

A utility mining method with IIDS scans a database that is smaller than the original by skipping isolated items
to reduce the critical function values of candidates. A low critical function value indicates the low upper bound of
the candidate’s utility value. Thus, a utility mining method with IIDS generates fewer candidates than the utility
mining method without IIDS to improve performance. In addition to utility mining, IIDS can be employed for
traditional frequent itemset mining. According to the Apriori property [2,3], if an itemset is infrequent, then all
supersets of the itemset are infrequent. If the utility value of each itemset is replaced with its support value and
RCk is the set of frequent k-itemsets in each pass, then the utility mining with IIDS can be utilized for mining fre-
quent itemsets. Therefore, IIDS also works well to discover traditional frequent itemsets.

5. Experimental results

The performance of two methods FUM and DCG+, in which IIDS was implemented, was compared with
that of TP, ShFSM, and DCG. The experiments were done on an AMD Barton ES 2900+ (2000 MHz) PC
with 3 GB of main memory, running the Windows XP Professional operating system. All algorithms were
implemented in Visual C++ 6.0 and applied to several synthetic and real datasets. To reduce the effect of disk
writing, all discovered high utility itemsets were stored in the main memory. All experimental synthetic data-
sets and a real dataset were adopted from NU-MineBench 2.0, a powerful benchmark suite consisting of mul-
tiple data mining applications and databases [31].

5.1. Synthetic datasets

An IBM synthetic data generator [19] was used for this study. The parameters of the generator are intro-
duced in [3] and modified in [27]. The generated datasets are classified into two groups: (1) T10.I6, with a
mean transaction size of 10 and mean size of the maximal potentially frequent itemsets of six; and (2)
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T20.I6, with a mean transaction size of 20 and mean maximal potentially frequent itemsets size of six. In each
itemset of the synthetic datasets, internal utilities between one and four were randomly generated. Observed
from real-world databases, most items are in the low profit range [27,28]. Therefore, the external utility of
each item was heuristically chosen between 0.01 and 10 and randomly generated with a log-normal distribu-
tion. Fig. 4 shows the external utility distribution with 1000 and 2000 distinct items. The most items have a
low external utility value.

Figs. 5–7 show the performance curves associated with these algorithms performed on
T10.I6.D1000k.N1000, T10.I6.D100k.N2000, and T20.I6.D1000k.N1000, respectively. FUM and DCG+
had better performance than ShFSM and DCG, respectively. The experimental results demonstrate that
employing IIDS can improve the performance of ShFSM and DCG. The running time of ShFSM was less
than that of TP for scanning the database once. In a low minUtil value, FUM performed the best, followed
by DCG+ and DCG (see Figs. 5a, 6a and 7a). In a high minUtil value, DCG+ and DCG performed the best
(see Figs. 5b, 6b and 7b).

As shown in Fig. 5, DCG+ was the most efficient method in a minUtil range of 0.07% to 0.2%, followed by
FUM, DCG, ShFSM, and TP, respectively. In a minUtil range of 0.08% to 0.28%, FUM outperformed DCG
(Fig. 7). With a minUtil of 0.20%, the execution times of DCG+, FUM, DCG, and ShFSM were 41.9%,
61.2%, 80.2%, and 93% of the TP, respectively (Fig. 7a).

Table 8 lists the candidate numbers of Ck and RCk among the five algorithms in each pass using
T10.I6.D1000k.N1000 with minUtil of 0.12%. Except for the first and the second passes, FUM and DCG+
generated a smaller candidate set than ShFSM and DCG, respectively. The running time of Phase I of TP
was 3.9 s less than the total running time of ShFSM. However, TP required Phase II to determine HUI(DB).
The total running time of TP was 177.1 s, while the time for ShFSM was 159.2 s. Although no high utility
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Fig. 4. External utility distribution with distinct items.

T10.I6.D1000k.N1000

200

300

400

500

600

700

800

0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08%

minUtil

R
un

ni
ng

 ti
m

e 
(s

ec
.)

 

TP
ShFSM
DCG
FUM
DCG+

T10.I6.D1000k.N1000

0

50

100

150

200

250

300

0.08% 0.12% 0.16% 0.20% 0.24% 0.28% 0.32%

minUtil

R
un

ni
ng

 ti
m

e 
(s

ec
.)

 

TP
ShFSM
DCG
FUM
DCG+

(a) between 0.02% and 0.08% (b) between 0.08% and 0.32% 

Fig. 5. Comparison of running time using T10.I6.D1000k.N1000 with various minUtil.
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Fig. 7. Comparison of running time using T20.I6.D1000k.N1000 with various minUtil.

Table 8
Candidate number comparison in each pass using T10.I6.D1000k.N1000 with minUtil ¼ 0:12%

Pass (kÞ Method j HUIk j
TP (Phase I) ShFSM DCG FUM DCG+

j Ck j j RCk j j Ck j j RCk j j Ck j j RCk j j Ck j j RCk j j Ck j j RCk j
k = 1 1000 893 1000 893 1000 NA 1000 893 1000 NA 238
k = 2 398278 9472 398278 9472 9472 NA 398278 9338 9472 NA 18
k = 3 95038 1357 95038 1356 1357 NA 93431 1116 1120 NA 1
k = 4 1635 1421 1635 1421 1421 NA 1355 491 491 NA 1
k = 5 1440 1386 1440 1385 1386 NA 549 56 56 NA 0
k = 6 1117 1103 1117 1103 1103 NA 28 28 28 NA 0
k = 7 700 684 700 680 684 NA 8 0 8 NA 1
k = 8 332 332 332 330 332 NA 0 0 0 NA 0
k = 9 110 110 110 110 110 NA 0 0 0 NA 0
k = 10 22 22 22 22 22 NA 0 0 0 NA 0
k = 11 2 2 2 0 2 NA 0 0 0 NA 0

Total 499674 16782 499674 16772 16889 NA 494649 11922 12175 NA 259
Time (s) 177.1 (155.3) 159.2 151.3 109.1 100.2
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itemset has a length between five and six, these algorithms did discover the high utility 7-itemset (see the last
column of Table 8). FUM and DCG+ scanned the database 7 times; ShFSM and DCG 11 times; and TP 12
times. Table 8 demonstrates that IIDS can help to reduce the size of candidate set and reduce the number of
passes to scan the database.

Table 9 lists the candidate numbers generated from the four algorithms with a length greater than two. In
the first pass of database scan, the set of isolated items was empty, so the IIDS took no action. Therefore,
Table 9 only compares the difference of the numbers of candidates, with at least length three, generated by
algorithms with and without implementing IIDS. The percentages in the column ‘‘Reducing rate 1’’ indicate
that FUM saves percentage of generated candidates of the ShFSM did. The percentage numbers in the column
‘‘Reducing rate 2’’ indicate that DCG+ saves percentage of generated candidates of DCG did. In Table 9, the
algorithm with IIDS always generates fewer candidates than the corresponding algorithm without IIDS. For
T10.I6.D1000k.N1000 and T20.I6.D1000k.N1000, utility mining with a high minUtil value can obtain a sig-
nificant improvement. For the dataset T10.I6.D1000k.N2000, the improvement is significant in two minUtil

ranges (0.06–0.14% and 0.20–0.24%).
Fig. 8 shows the scalability of these algorithms by increasing the number of transactions on

T10.I6.Dxk.N1000 and T20.I6.Dxk.N1000, respectively, with minUtil of 0.12%. The number of transactions
varies from 1000 k to 6000 k. The running time of each algorithm approximately increases linearly with the
growth of DB. In Fig. 8a, the running time of FUM and DCG+ is less than that of FSM and DCG, achieving
31% and 35%, respectively. For a longer mean transaction size (Fig. 8b), FUM and DCG+ have better per-
formance than ShFSM and DCG with running times of 20% and 30%, respectively. Thus, the utility mining
methods with IIDS significantly reduced the running time while offering linear scalability.

Table 9
Candidate number comparison with length greater than two

Dataset minUtil ShFSM
(A)

FUM (with
IIDS) (B)

Reducing rate 1
A�B

A � 100%
� � DCG

(C)
DCG+ (with
IIDS) (D)

Reducing rate 2
C�D

C � 100%
� �

T10.I6.D1000k.N1000 0.04% 2604920 2600651 0.16% 415654 412914 0.66%
0.06% 1065356 1056684 0.81% 185127 176963 4.41%
0.08% 454015 443752 2.26% 61871 51632 16.55%
0.10% 201351 194599 3.35% 17351 10551 39.19%
0.12% 100396 95371 5.01% 6417 1703 73.46%
0.14% 51042 48385 5.21% 2217 451 79.66%
0.16% 27356 26634 2.64% 370 106 71.35%
0.18% 14852 14235 4.15% 174 61 64.94%
0.20% 8067 7601 5.78% 21 0 100.00%

T10.I6.D1000k.N2000 0.04% 674897 669019 0.87% 413768 406654 1.72%
0.06% 248961 229023 8.01% 187048 159362 14.80%
0.08% 87622 66936 23.61% 70603 43641 38.19%
0.10% 38080 14156 62.83% 31496 5222 83.42%
0.12% 6048 4702 22.42% 4039 2316 42.66%
0.14% 2949 2678 9.19% 2313 1985 14.18%
0.16% 2313 1985 14.18% 2216 2186 1.35%
0.18% 2045 2032 0.64% 1988 1981 0.33%
0.20% 2002 1905 4.85% 1986 1776 11.08%
0.22% 1990 501 74.82% 1981 182 90.81%
0.24% 1956 166 91.51% 1902 0 100.00%

T20.I6.D1000k.N1000 0.06% 10764231 10752539 0.11% 483418 477647 1.19%
0.10% 4357889 4338928 0.44% 137096 120669 11.98%
0.14% 2042690 2027660 0.74% 34450 21020 38.98%
0.18% 1054549 1041902 1.20% 10643 4037 62.07%
0.22% 574654 563818 1.89% 3385 759 77.58%
0.26% 329566 321728 2.38% 1906 314 83.53%
0.30% 192540 186190 3.30% 165 16 90.3%
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5.2. Real dataset

This study also evaluated these algorithms using a real dataset. The Chain-store dataset was taken from a
major grocery store chain in California and contained 1112949 transactions and 46086 distinct items. The
utility table stored the profit for each item. The total profit of the dataset is $26388499.80.

Fig. 9 presents the performance with several minUtil values from 0.05% to 0.36%. Because DCG and
DCG+ maintained an extra array for each candidate, the main memory could not keep all candidates in each
pass; for this reason, DCG and DCG+ are not illustrated in Fig. 9. Fig. 9 shows that FUM outperformed
ShFSM and TP; the running time of FUM was only 64.6% and 76.7% of the times for ShFSM and TP, respec-
tively, with minUitl = 0.12%.

Table 10 lists the candidate numbers of Ck and RCk among the three algorithms in each pass using the real
dataset with minUtil of 0.06%. The total running time of TP was 122.5 s, which was 13.9 s slower than
ShFSM’s 108.6 s. FUM scanned the database four times; ShFSM, five times; and TP, six times. Table 10 dem-
onstrates that IIDS can help to significantly reduce the size of the candidate set with length greater than two
and can reduce the number of passes required to scan the real dataset. For example, in the third pass, ShFSM
generated 78238 candidates, while FUM only generated 45795 candidates.

To analyze the difference between the high utility itemsets and the support-based frequent itemsets, this
experiment employed the FP-growth algorithm [16] to generate all frequent itemsets. For the Chain-store
dataset with minSup = 0.0073%, FP-growth generated 14352, 33371, 6569, 441, and 14 frequent itemsets with
length from one to five, respectively.

The three high utility itemsets with length three, which were discovered from Chain-store using FUM with
minUtil = 0.06%, their local utility values and their support values as shown in Table 11. Numbers in an item-
set indicate the IDs of products. Sales managers are interested in finding out which itemsets can generate high
profits, but the traditional frequent itemset mining method may not satisfy this goal. For example, a utility
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Fig. 8. Scalability with the number of transactions while minUtil = 0.12%.
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mining approach discovered the three high utility 3-itemsets with minUtil of 0.06% (Table 11). Selling the com-
bination of products, {39182,39206,39695}, earned a profit of $25 484.30. FP-growth discovered six frequent
3-itemsets, omitting the first two highest utility itemsets, {39 182,39 206,39695} and {39681,39690,39692}
when the minimum support threshold was 0.1%. To obtain the two highest utility 3-itemsets, the minSup

threshold must be set less than 0.0074%. Nevertheless, the low threshold value, 0.0073%, resulted in 6569
3-itemsets being generated. FP-growth generated too many useless frequent 3-itemsets which interfered in
selecting of high profit itemsets. Even when the interesting itemsets were discovered, the real profits were still
unknown.

Fig. 10 shows the corresponding support values of the 196 high utility itemsets with minUtil of 0.06%. The
x-axis represents the ranked high utility itemsets decreasing ordered by their utility values, and the y-axis rep-
resents their support values. The itemset ranked 31st had the maximum support value 5.734%. The support
value (3.149%) of the itemset ranked 169th was over 400 times the support value (0.007%) of the itemset
ranked 87th. In this case, an itemset with a higher profit had a lower support value. Traditional frequent item-
set mining using a support threshold cannot effectively discover high utility itemsets. Therefore, utility mining

Table 10
Candidate number comparison in each pass using the real dataset with minUtil = 0.06%

Pass (k) Method j HUIk j
TP (Phase I) ShFSM FUM (with IIDS)

j Ck j j RCk j j Ck j j RCk j j Ck j j RCk j
k = 1 46086 6344 46086 6335 46086 6335 154
k = 2 20119996 7873 20062945 7869 20062945 5454 39
k = 3 78278 1083 78 238 1081 45 795 170 3
k = 4 596 43 596 43 44 0 0
k = 5 1 0 1 0 0 0 0

Total 20244957 15343 20187866 15328 20154870 11959 196
Time (s) 122.5 (103.9) 108.6 89.1

Table 11
High utility 3-itemsets discovered from Chain-store using minUtil = 0.06%

High utility 3-itemset X Lutil(X) Support (%) Support ranking in all 3-itemsets

{39182,39206,39695} 25484.3 0.0074 6400
{39681,39690,39692} 19520.8 0.0093 3710
{21283,21308,22900} 19064.9 0.1002 6
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Fig. 10. Support values of 196 high utility itemsets, ranked by utility value.
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is more useful for a profit-oriented business environment than the traditional association rule mining that is
currently used in practice.

6. Conclusions

Increasing the profit of a corporation is one of the most important goals of data mining. Traditional asso-
ciation rules methods only consider whether an item is bought in a transaction. However, customers can buy
more than one of the same item in a transaction, and the unit profit for each item may vary. Utility mining, a
generalized form of share mining, has been proposed to overcome the drawback of traditional association rule
mining. However, the Apriori principle cannot be directly applied to efficiently discover high utility itemsets as
this becomes time-consuming. The ability to efficiently identify high utility itemsets is crucial for utility mining.
Therefore, this study proposes the Isolated Items Discarding Strategy (IIDS) to identify isolated items from
transactions and ignore them in the process of candidate itemset generation. The contributions of this study
are as follows:

1. Propose IIDS to reduce the critical function values of itemsets.
2. The experimental results using synthetic and real datasets reveal that the performances of FUM and

DCG+ were better than that of ShFSM and DCG, respectively. IIDS can further decrease the number
of candidates and efficiently increase the performance of these utility mining methods.

3. Theoretical proofs and experimental results indicate that the IIDS is a promising strategy for utility
mining.

IIDS can also be applied to Apriori-like traditional mining. In the future, the authors will extend the appli-
cation scope of IIDS to some classification models. Classification is an important problem in data mining; sev-
eral researchers have integrated classification and association rule mining [14,25]. Thus, the connection
between utility mining and associative classification should be further investigated.
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Appendix A. Proofs for the theorems and lemma given in Section 3

Proof of Theorem 3.1. For each X kþi, since LutilðX kþiÞ 6 CF ðX Þ < minLutil;X kþi is a low utility itemset. X kþi

is an arbitrary superset of X. Therefore, if CF(X) < minLutil, then no superset of X has high utility. h

Proof of Lemma 3.1.

(1) dbSðX kþiÞ � dbSðX kþ1Þ: Let T be an arbitrary transaction and T 2 dbSðX kþiÞ. That is, there exists a ðk þ iÞ-item-
set X kþi, for some i > 0, such that X kþi � T . Clearly, any (k + 1)-subset of X kþi containing X is also con-
tained in T. Therefore, T 2 dbSðX kþ1Þ:

(2) dbSðX kþiÞ � dbSðX kþ1Þ: Let T be an arbitrary transaction and T 2 dbSðX kþ1Þ. That is, there exists a (k + 1)-
itemset X kþ1, such that X kþ1 � T . Clearly X kþ1 2 SðX kþiÞ, according to Definition 3.4, T 2 dbSðX kþiÞ:

Hence, we obtain dbSðX kþiÞ ¼ dbSðX kþ1Þ. h

Proof of Theorem 3.2. For an arbitrary ðk þ iÞ-superset X kþi of X, since X kþi 2 SðX kþiÞ, DBX kþi � dbSðX kþiÞ. By
Lemma 3.1, DBX kþi � dbSðX kþ1Þ. According to Definitions 2.5 and 2.6, LutilðX kþiÞ 6 TutilðdbSðX kþ1ÞÞ. h
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Appendix B. Proofs for the lemma, corollary, and theorems given in Section 4

Proof of Lemma 4.1. Since for all HIr 2 HUIPkðDBÞ, the length of HIr; j HIr j, is at least k. According to
Definition 4.2, let T q ¼ NT k

q [ tq, where NT k
q \ tq ¼ ; and tq � ISetk. Each item in tq has no high utility superset

with length at least k in HUIPkðDBÞ. So that for all ip 2 tq, ip 62 HIr. HIr \ tq ¼ ;. If HIr � T q then
HIr � T q � tq. Therefore, HIr � NT k

q. h

Proof of Corollary 4.1. According to Lemma 4.1, if HIr � T q, HIr � NT k
q. For any ip 2 HIr, iuðip; T qÞ ¼

iuðip;NT k
qÞ since NT k

q is a subset of Tq. Moreover, utilðip; T qÞ ¼ iuðip; T qÞ � euðipÞ ¼ iuðip;NT k
qÞ

�euðipÞ ¼ utilðip;NT k
qÞ. Therefore, utilðHIr; T qÞ ¼

P
ip2HIr�T q

utilðip; T qÞ ¼
P

ip2HIr�NT k
q
utilðip; T qÞ ¼

P
ip2HIr�NT k

q

utilðip;NT k
qÞ ¼ utilðHIr;NT k

qÞ. h

Proof of Theorem 4.1.

(1) HUIPkðNDBkÞ � HUIPkðDBÞ: According to Definition 4.3, NDBk is the database that consists of NT k
q for

all Tq in DB. The mapping function of transactions is ‘‘one-to-one and onto’’ between NDBk and DB.
For an arbitrary itemset NT k

q in NDBk and the corresponding Tq in DB, we have NT k
q � T q. So that for all

Tq in DB, X � T q, we have utilðX ; T qÞP utilðX ;NT k
qÞ.
P

T q2DButilðX ; T qÞP
P

NT k
q2NDBk utilðX ; T qÞ. That

is, HUIðNDBkÞ � HUIðDBÞ. Therefore, HUIPkðNDBkÞ � HUIPkðDBÞ.
(2) HUIPkðDBÞ � HUIPkðNDBkÞ: Assume there exists HIr 2 HUIPkðDBÞ, but HIr 62 HUIPkðNDBkÞ. There-

fore, there exists an transaction T q in DB such that utilðHIr; T qÞ > utilðHIr;NT k
qÞ. However, according

to Corollary 4.1, utilðHIr; T qÞ ¼ utilðHIr;NT k
qÞ. This contradicts the assumption. Therefore,

HUIPkðDBÞ � HUIPkðNDBkÞ.

According to the above two cases, we have HUIPkðDBÞ ¼ HUIPkðNDBkÞ. h

Proof of Theorem 4.2. By Definition 4.4, clearly, HUIPkðDBÞ is the disjoint union of HUIkðDBÞ and
HUIPkþ1ðDBÞ, and HUIPkðNDBkÞ is the disjoint union of HUIkðNDBkÞ and HUIPkþ1ðNDBkÞ. According to The-
orem 4.1, we have HUIPkðDBÞ ¼ HUIPkðNDBkÞ, for all k > 0. That is, HUIPkðDBÞ ¼ HUIPkðNDBkÞ and
HUIPkþ1ðDBÞ ¼ HUIPkþ1ðNDBkÞ both hold, therefore, HUIkðDBÞ ¼ HUIPkðDBÞ � HUIPkþ1ðDBÞ ¼ HUIPk

ðNDBkÞ � HUIPkþ1ðNDBkÞ ¼ HUIkðNDBkÞ. h
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